Procesos biológicos para el tratamiento de lactosuero con producción de biogás e hidrógeno. Revisión bibliográfica

  1. Fernández Rodríguez, Camino 1
  2. Martínez Torres, Elia Judith 1
  3. Morán Palao, Antonio 1
  4. Gómez Barrios, Xiomar 1
  1. 1 Universidad de León
    info

    Universidad de León

    León, España

    ROR https://ror.org/02tzt0b78

Aldizkaria:
Revista ION: Investigación, Optimización y Nuevos Procesos en Ingeniería

ISSN: 2145-8480 0120-100X

Argitalpen urtea: 2016

Zenbakien izenburua: Revista ION

Alea: 29

Zenbakia: 1

Orrialdeak: 47-62

Mota: Artikulua

DOI: 10.18273/REVION.V29N1-2016004 DIALNET GOOGLE SCHOLAR lock_openSarbide irekia editor

Beste argitalpen batzuk: Revista ION: Investigación, Optimización y Nuevos Procesos en Ingeniería

Garapen Iraunkorreko Helburuak

Laburpena

La industria láctea se caracteriza por generar lactosuero como subproducto del proceso de elaboración del queso. El lactosuero presenta un elevado contenido en materia orgánica en forma de lactosa, proteínas y otros compuestos procedentes de la leche. Su vertido incontrolado puede ocasionar problemas de contaminación con un grave impacto ambiental. Sin embargo, la recuperación de algunos componentes del lactosuero permite valorizar este subproducto, encontrando aplicación en la industria alimentaria, farmacéutica y recientemente en la conversión del lactosuero para la producción de biocombustibles. Actualmente, los biocombustibles son una fuente potencial de energía renovable con un papel importante como posibles sustitutos de los combustibles fósiles. Por este motivo, la opción de gestionar el lactosuero mediante una valorización energética ha adquirido gran interés durante los últimos años. Entre las alternativas disponibles de aprovechamiento energético, se encuentra la digestión anaerobia, la cual es una de las tecnologías más empleadas para el tratamiento de diverso tipo de residuos. En el caso del lactosuero, se han desarrollado múltiples trabajos en los que se han utilizado diferentes configuraciones y condiciones de operación con el objetivo de mejorar el funcionamiento del proceso. Gracias a estos trabajos se han podido identificar algunos de los factores que limitan su aplicación como son: la tendencia a la acidificación o la limitación de nutrientes. Por este motivo se han promovido otras alternativas como son los procesos de co-digestión con varios materiales o la fermentación oscura. El objetivo de este artículo es la realización de una revisión bibliográfica de los principales trabajos realizados en los que se contemplan los procesos biológicos anteriormente mencionados. Se presentan los resultados más relevantes, así como la influencia de las condiciones de operación y los factores que afectan a la producción de biogás.

Erreferentzia bibliografikoak

  • Referencias [1] Food and Agriculture Organization of the United Nations Statistics Division (FAOSTAT). Statistical Data porduction livestock processed (Sitio en internet). Disponible en: http://faostat3.fao.org/browse/Q/QP/E. Acceso el 20 de Octubre de 2015.
  • [2] Remón J, Laseca M, García L, Arauzo J. Hydrogen production from cheese whey by catalytic steam reforming: Preliminary study using lactose as a model compound. Energy Convers. Manage. 2016;114:122-41.
  • [3] Prazeres AR, Carvalho F, Rivas J. Fenton-like application to pretreated cheese whey wastewater. J. Environ. Manage. 2013;129(15):199-205.
  • [4] Panesar PS, Kennedy JF, Gandhi DN, Bunko K. Bioutilisation of whey for lactic acid production. Food Chem. 2007;105(1):1-14.
  • [5] Prazeres AR, Carvalho F, Rivas J. Cheese whey management: A review. J. Environ. Manage. 2012;110:48-68.
  • [6] Pintado ME, Macedo AC, Malcata FX. Review: Technology, chemistry and microbiology of whey cheeses. Food Sci. Technol. Int. 2001;7(2):105-16.
  • [7] Prazeres AR, Carvalho F, Rivas J, Patanita M, Dôres J. Pretreated cheese whey wastewater management by agricultural reuse: Chemical characterization and response of tomato plants Lycopersicon esculentum Mill. under salinity conditions. Sci. Total Environ. 2013;463–464,943-51.
  • [8] De Wit JN. Lecturer’s Handbook on Whey and Whey Products. Bélgica: European Whey Products Association; 2001.
  • [9] Plessas S, Bosnea L, Psarianos C, Koutinas AA, Marchant R, Banat IM. Short communication: lactic acid production by mixed cultures of Kluyveromyces marxianus, Lactobacillus delbrueckii ssp. bulgaricus and Lactobacillus helveticus. Bioresour. Technol. 2008;99(13):5951-5.
  • [10] Ibrahim SA. Lactic Acid Bacteria: Lactobacillus spp.: Other Species. Reference Module in Food Science: Elsevier; 2016.
  • [11] Santos MJ, Teixeira JA, Rodrigues LR. Fractionation and recovery of whey proteins by hydrophobic interaction chromatography. Journal Chromatogr. B. 2011;879(7–8):475-9.
  • [12] Zafar S, Owais M. Short communication: Ethanol production from crude whey by Kluyveromyces marxianus. Biochem. Eng. J. 2006;27(3):295-8.
  • [13] Sansonetti S, Curcio S, Calabrò V, Iorio G. Bio-ethanol production by fermentation of ricotta cheese whey as an effective alternative non-vegetable source. Biomass Bioenerg. 2009;33(12):1687-92.
  • [14] Ozmihci S, Kargi F. Effects of feed sugar concentration on continuous ethanol fermentation of cheese whey powder solution (CWP). Enzyme Microb. Technol. 2007;41(6-7):876-80.
  • [15] Guimarães PMR, Teixeira JA, Domingues L. Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol Adv. 2010;28(3):375-84.
  • [16] Staniszewski M, Kujawski W,Lewandowska M. Semi-continuous etanol production in bioreactor from whey with co-immobilized enzyme and yeast cells followed by pervaporative recovery of producte.Kinetic model predictions considering glucose repression. J. Food Eng. 2009;91(2):240-9.
  • [17] Stoeberl M, Werkmeister R, Faulstich M, Russ W. Biobutanol from food wastes – fermentative production, use as biofuel an the influence on the emissions. Procedia Food Science. 2011;1:1867-74.
  • [18] Raganati F, Olivieri G, Procentese A, Russo ME, Salatino P, Marzocchella A. Butanol production by bioconversion of cheese whey in a continuous packed bed reactor. Bioresour. Technol. 2013;138:259-65.
  • [19] Yadav JSS, Yan S, Pilli S, Kumar L, Tyagi RD, Surampalli RY. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnol. Adv. 2015;33(6):756-74.
  • [20] Ward AJ, Hobbs PJ, Holliman PJ, Jones DL. Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 2008;99(17):7928-40.
  • [21] Alburquerque JA, de la Fuente C, Bernal MP. Chemical properties of anaerobic digestates affecting C and N dynamics in amended soils. Agric. Ecosyst. Environ. 2012;160:15-22.
  • [22] Massé DI, Droste RL. Comprehensive model of anaerobic digestion of swine manure slurry in a sequencing batch reactor. Water Res. 2000;34(12):3087-3106.
  • [23] Malaspina F, Cellamare CM, Stante L, Tilche A. Anaerobic treatment of cheese whey with a downflow-upflow hybrid reactor. Bioresour. Technol. 1996;55(2):131-9.
  • [24] Yang K, Yu Y, Hwang S. Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids: partial acidification and methanation. Water Res. 2003;37(10):2467-77.
  • [25] Chatzipaschali AA, Stamatis AG. Biotechnological Utilization with a Focus on Anaerobic Treatment of Cheese Whey: Current Status and Prospects. Energies. 2012;5:3492-525.
  • [26] Demirel B, Yenigun O, Onay TT. Anaerobic treatment of dairy wastewaters: a review. Process Biochem. 2005;40(8):2583-95.
  • [27] Yan JQ, Lo KV, Liao PH. Anaerobic digestion of cheese whey using an upflow anaerobic sludge blanket reactor: III. Sludge and substrate profiles. Biomass.1990;21(4):257-71.
  • [28] Kalyuzhnyi SV, Martinez EP, Martinez JR. Anaerobic treatment of high-strength cheese-whey wastewaters in laboratory and pilot UASB-reactors. Bioresour. Technol. 1997 4;60(1):59-65.
  • [29] Ergüder TH, Tezel U, Güven E, Demirer GN. Anaerobic biotransformation and methane generation potential of cheese whey in batch and UASB reactors. Waste Manage. 2001;21(7):643-50.
  • [30] Gavala HN, Kopsinis H, Skiadas IV, Stamatelatou K, Lyberatos G. Treatment of Dairy Wastewater Using an Upflow Anaerobic Sludge Blanket Reactor. J. Agric. Eng. Res. 1999;73(1):59-63.
  • [31] Patel P, Desai M, Madamwar D. Biomethanation of cheese whey using anaerobic upflow fixed film reactor. J Ferment Bioeng. 1995;79(4):398-9.
  • [32] Gannoun H, Khelifi E, Bouallagui H, Touhami Y, Hamdi M. Ecological clarification of cheese whey prior to anaerobic digestion in upflow anaerobic filter. Bioresour. Technol. 2008;99(14):6105-11.
  • [33] Puñal A, Méndez-Pampín RJ, Lema JM. Characterization and comparison of biomasses from single- and multi-fed upflow anaerobic filters. Bioresour. Technol. 1999;68(3):293-300.
  • [34] Najafpour GD, Hashemiyeh BA, Asadi M, Ghasemi MB. Biological Treatment of Dairy Wastewater in an Upflow Anaerobic Sludge-Fixed Film Bioreactor. American-Eurasian J. Agric. & Environ. Sci. 2006;4:251-7.
  • [35] Parra RA. Digestión Anaerobia de Lactosuero: Efecto de Altas Cargas Puntuales. Rev. Fac.Nal. Agr. Medellín. 2010;63(1):5385-94.
  • [36] Rodgers M, Zhan X, Dolan B. Mixing Characteristics and Whey Wastewater Treatment of a Novel Moving Anaerobic Biofilm Reactor. J. Environ. Sci. Health., Part A. 2004;39:2183-93.
  • [37] Yan JQ, Liao PH, Lo KV. Methane production from cheese whey. Biomass. 1988;17(3):185-202.
  • [38] Lebrato J, Pérez Rodríguez JL, Maqueda C, Morillo E. Cheese factory wastewater treatment by anaerobic semicontinuous digestion. Resour. Conserv. Recy. 1990;3(4):193-9.
  • [39] Rugele K, Mezule L, Dalecka B, Larsson S, Vanags J, Rubulis J. Application of fluorescent in situ hybridisation for monitoring methanogenic archaea in acid whey anaerobic digestion. Agron. Res. 2013;11(2):373-80.
  • [40] Kim J, Lee C. Response of a continuous biomethanation process to transient organic shock loads under controlled and uncontrolled pH conditions. Water. Res. 2015;73:68-77.
  • [41] Banik GC, Daguet RR. ASBR treatment of low strength industrial wastewater at psychrophilic temperatures. Water Sci. Technol.1997;36(2-3):337-44.
  • [42] Göblös S, Portörő P, Bordás D, Kálmán M, Kiss I. Comparison of the effectivities of two-phase and single-phase anaerobic sequencing batch reactors during dairy wastewater treatment. Renew. Energy. 2008;33(5):960-5.
  • [43] Fernández C, Cuetos MJ, Martínez EJ, Gómez X. Thermophilic anaerobic digestion of cheese whey: Coupling H2 and CH4 production. Biomass Bioenergy. 2015;81:55-62.
  • [44] Mockaitis G, Ratusznei SM, Rodrigues JAD, Zaiat M, Foresti E. Anaerobic whey treatment by a stirred sequencing batch reactor (ASBR): effects of organic loading and supplemented alkalinity. J Environ. Manage. 2006;79(2):198-206.
  • [45] Mata-Alvarez J, Mace S, Llabres P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 2000;74(1):3-16.
  • [46] Lo KV, Liao PH. Anaerobic-aerobic biological treatment of a mixture of cheese whey and dairy manure. Biol. Waste. 1989;28(2):91-101.
  • [47] Comino E, Riggio VA, Rosso M. Biogas production by anaerobic co-digestion of cattle slurry and cheese whey. Bioresour. Technol. 2012;114:46-53.
  • [48] Kavacik B, Topaloglu B. Biogas production from co-digestion of a mixture of cheese whey and dairy manure. Biomass Bioenergy. 2010;34(9):1321-9.
  • [49] Gelegenis J, Georgakakis D, Angelidaki I, Mavris V. Optimization of biogas production by co-digesting whey with diluted poultry manure. Renew. Energy. 2007;32(13):2147-60.
  • [50] Rico C, Muñoz N, Fernández J, Rico JL. High-load anaerobic co-digestion of cheese whey and liquid fraction of dairy manure in a one-stage UASB process: Limits in co-substrates ratio and organic loading rate. Chem. Eng. J. 2015;262:794-802.
  • [51] Rico C, Muñoz N, Rico JL. Anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure in a single continuously stirred tank reactor process: Limits in co-substrate ratios and organic loading rate. Bioresour. Technol. 2015;189:327-33.
  • [52] Bertin L, Grilli S, Spagni A, Fava F, Innovative two-stage anaerobic process for effective codigestion of cheese whey and cattle manure. Bioresour. Technol. 2013;128:779-83.
  • [53] Battista F, Fino D, Erriquens F, Mancini G, Ruggeri B. Scaled-up experimental biogas production from two agro-food waste mixtures having high inhibitory compound concentrations. Renew. Energy. 2015;81:71-7.
  • [54] Shilton A, Powell N, Broughton A, Pratt C, Pratt S, Pepper C. Enhanced biogas production using cow manure to stabilize co-digestion of whey and primary sludge. Environ. Technol. 2013;34(17):2491-6.
  • [55] Powell N, Broughton A, Pratt C, Shilton A. Effect of whey storage on biogas produced by co-digestion of sewage sludge and whey. Environ. Technol. 2013;34(19):2743-8.
  • [56] Fernández C, Blanco D, Fierro J, Martínez EJ Gómez X. Anaerobic Co-digestion of Sewage Sludge with Cheese Whey under Thermophilic and Mesophilic Conditions. Int. J. Energy Eng. 2014;4(2):26-31.
  • [57] Park W, Hyun SH, Oh SE, Logan BE, Kim IS. Removal of headspace CO2 increases biological hydrogen production.Environ Sci Technol. 2005;39(12):4416-20.
  • [58] Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PNL, et al. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl. Energy. 2015;144:73-95.
  • [59] Gómez X, Fernández C, Fierro J, Sánchez ME, Escapa A, Morán A. Hydrogen production: Two stage processes for waste degradation. Bioresour. Technol. 2011;102(18):8621-7.
  • [60] Wang J, Wan W. Factors influencing fermentative hydrogen production: A review. Int. J. Hydrogen Energy. 2009;34(2):799-811.
  • [61] Yang P, Zhang R, McGarvey JA, Benemann JR. Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int. J. Hydrogen Energy. 2007;32(18):4761-71.
  • [62] Azbar N, Çetinkaya Dokgöz FT, Keskin T, Korkmaz KS, Syed HM. Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. Int. J. Hydrogen Energy. 2009;34(17):7441-7.
  • [63] Davila-Vázquez G, Cota-Navarro CB,Rosales-Colunga LM, de León-Rodríguez A, Razo-Flores E. Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate. Int. J. Hydrogen Energy. 2009;34(10):4296-304.
  • [64] Castelló E, García y Santos C, Iglesias T, Paolino G, Wenzel J, Borzacconi L, et al. Feasibility of biohydrogen production from cheese whey using a UASB reactor: Links between microbial community and reactor performance. Int. J. Hydrogen Energy. 2009;34(14):5674-82.
  • [65] Carrillo-Reyes J, Celis LB, Alatriste-Mondragón F, Razo-Flores E. Different start-up strategies to enhance biohydrogen production from cheese whey in UASB reactors. Int. J. Hydrogen Energy. 2012;37(7):5591-601.
  • [66] Perna V, Castelló E, Wenzel J, Zampol C, Fontes Lima DM, Borzacconi L, Varesche MB, Zaiat M, Etchebehere C. Hydrogen production in an upflow anaerobic packed bed reactor used to treat cheese whey. Int. J. Hydrogen Energy. 2013;38(1):54-62.
  • [67] Fernández C, Carracedo B, Martínez EJ, Gómez X, Morán A. Application of a packed bed reactor for the production of hydrogen from cheese whey permeate: Effect of organic loading rate. J. Environ. Sci. Health., Part A. 2014;49(2):210-7.
  • [68] Ferchichi M, Crabbe E, Gil G, Hintz W, Almadidy A. Influence of initial pH on hydrogen production from cheese whey. J Biotechnol. 2005;120(4):402-9.
  • [69] Davila-Vazquez G, Alatriste-Mondragón F, de León-Rodríguez A, Razo-Flores E. Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: Influence of initial substrate concentration and pH. Int. J. Hydrogen Energy. 2008;33(19):4989-97.
  • [70] Kargi F, Eren NS, Ozmihci S. Hydrogen gas production from cheese whey powder (CWP) solution by thermophilic dark fermentation. Int J Hydrogen Energy. 2012;37(3):2260-6.
  • [71] Azbar N, Dokgöz FT, Keskin T, Eltem R, Korkmaz KS, Gezgin Y, et al. Comparative evaluation of bio-hydrogen production from cheese whey wastewater under thermophilic and mesophilic anaerobic conditions. International Journal of Green Energy. 2009;6(2):192-200.
  • [72] Rai P, Singh SP, Asthana RK. Biohydrogen Production from Cheese Whey Wastewater in a Two-Step Anaerobic Process. Appl. Biochem. Biotechnol. 2012;167(6):1540-9.
  • [73] Rosales-Colunga LM, Razo-Flores E, Ordoñez LG, Alatriste-Mondragón F, De León-Rodríguez A. Hydrogen production by Escherichia coli ΔhycA ΔlacI using cheese whey as substrate. Int. J. Hydrogen Energy. 2010;35(2):491-9.
  • [74] Seo YH, Yun Y, Lee H, Han J. Pretreatment of cheese whey for hydrogen production using a simple hydrodynamic cavitation system under alkaline condition. Fuel. 2015;150:202-7.
  • [75] Gomez-Romero J, Gonzalez-Garcia A, Chairez I, Torres L, García-Peña EI. Selective adaptation of an anaerobic microbial community: Biohydrogen production by co-digestion of cheese whey and vegetables fruit waste. Int. J. Hydrogen Energy. 2014;39(24):12541-50.
  • [76] Davila-Vazquez G, de León-Rodríguez A, Alatriste-Mondragón F, Razo-Flores E. The buffer composition impacts the hydrogen production and the microbial community composition in non-axenic cultures. Biomass Bioenergy. 2011;35(7):3174-81.
  • [77] De Gioannis G, Friargiu M, Massi E, Muntoni A, Polettini A, Pomi R, et al. Biohydrogen production from dark fermentation of cheese whey: Influence of pH. Int. J. Hydrogen Energy. 2014;39(36):20930-41.
  • [78] Teli A, Ficara E, Malpei F. Bio-hydrogen production from cheese whey by dark fermentation. Chem. Eng. Trans. 2014;37:613–8.
  • [79] Kisielewska M. Feasibility of Bioenergy Production from Ultrafiltration Whey Permeate Using the UASB Reactors. En: Biogas. Kumar S, Editor. Croacia: InTech; 2012 .p. 191-222.
  • [80] Antonopoulou G, Stamatelatou K, Venetsaneas N, Kornaros M, Lyberatos G. Biohydrogen and Methane Production from Cheese Whey in a Two-Stage Anaerobic Process. Ind. Eng. Chem. Res. 2008;47(15):5227-33.
  • [81] Venetsaneas N, Antonopoulou G, Stamatelatou K, Kornaros M, Lyberatos G. Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour. Technol. 2009;100(15):3713-7.
  • [82] Moreno R, Escapa A, Cara J, Carracedo B, Gómez X. A two-stage process for hydrogen production from cheese whey: Integration of dark fermentation and biocatalyzed electrolysis. Int. J. Hydrogen Energy. 2015;40(1):168-75.
  • [83] Yilmazer G, Yenigün O. Two-phase anaerobic treatment of cheese whey. Water Sci. Technol. 1999;40(1):289-95.
  • [84] Saddoud A, Hassaïri I, Sayadi S. Anaerobic membrane reactor with phase separation for the treatment of cheese whey. Bioresour. Technol. 2007;98(11):2102-8.
  • [85] Diamantis VI, Kapagiannidis AG, Ntougias S, Tataki V, Melidis P, Aivasidis A. Two-stage CSTR–UASB digestion enables superior and alkali addition-free cheese whey treatment. Biochem. Eng. J. 2014;84:45-52.
  • [86] Dareioti MA, Kornaros M. Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system. Bioresour. Technol. 2014;167:407-15.
  • [87] Dareioti MA, Kornaros M. Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: Effect of hydraulic retention time. Bioresour. Technol. 2015;175:553-62.