Localización en entornos estructurados basada en la detección de esquinas
- Bayón Gutiérrez, Martín 1
- Prieto Fernández, Natalia 1
- García Rodríguez, Isaías 1
- Benavides, Carmen 2
- García Ordás, María Teresa 1
- Benítez Andrades, José Alberto 2
- 1 Grupo de Investigación SECOMUCI, Departamento de Ingeniería Eléctrica y de Sistemas y Automática, Universidad de León, Campus de Vegazana s/n, 24071, León, España
- 2 Grupo de Investigación SALBIS, Departamento de Ingeniería Eléctrica y de Sistemas y Automática, Universidad de León, Campus de Vegazana s/n, 24071, León, España
- Cruz Martín, Ana María (coord.)
- Arévalo Espejo, V. (coord.)
- Fernández Lozano, Juan Jesús (coord.)
ISSN: 3045-4093
Año de publicación: 2024
Número: 45
Tipo: Artículo
Resumen
LiDAR (Light Detection and Ranging) sensors provide high accuracy and high resolution readings of the environment, which makes them a common sensor to be used in SLAM (Simultaneous Localization and Mapping) systems. The large volume of data provided by these sensors can be reduced to a set of characteristic points that define the environment, consequently simplifying the mapping and positioning process, while reducing the storage needed to preserve the measurements taken by the robot as well as the result of the SLAM process carried out. In this work, we propose a system for the estimation of the trajectory followed by a robot equipped solely with a 2D LiDAR. The point cloud is analyzed to extract a set of characteristic corners that compose the navigation environment, which allows for the estimation of the robot trajectory by means of PLGO (Pose-Landmark Graph Optimization). Experimental results show that the proposed method offers a localization accuracy similar to using ICP (Iterative Closest Point)
Referencias bibliográficas
- Altermatt, M., Martinelli, A., Tomatis, N., Siegwart, R., 2004. Slam with corner features based on a relative map. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566). Vol. 2. IEEE, pp. 1053–1058. DOI: 10.1109/IROS.2004.1389536 DOI: https://doi.org/10.1109/IROS.2004.1389536
- Campos, C., Elvira, R., Rodríguez, J. J. G., M. Montiel, J. M., D. Tardós, J., 2021. Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37 (6), 1874–1890. DOI: 10.1109/TRO.2021.3075644 DOI: https://doi.org/10.1109/TRO.2021.3075644
- Dellaert, F., 2012. Factor graphs and gtsam: A hands-on introduction. Tech. rep., Georgia Institute of Technology.
- Geiger, A., Lenz, P., Urtasun, R., 2012. Are we ready for autonomous driving? the kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR). DOI: 10.1109/CVPR.2012.6248074 DOI: https://doi.org/10.1109/CVPR.2012.6248074
- Grisetti, G., Guadagnino, T., Aloise, I., Colosi, M., Della Corte, B., Schlegel, D., 2020. Least squares optimization: From theory to practice. Robotics 9 (3), 51. DOI: 10.3390/robotics9030051 DOI: https://doi.org/10.3390/robotics9030051
- Guo, S., Rong, Z., Wang, S., Wu, Y., 2022. A lidar slam with pca-based feature extraction and two-stage matching. IEEE Transactions on Instrumentation and Measurement 71, 1–11. DOI: 10.1109/TIM.2022.3156982 DOI: https://doi.org/10.1109/TIM.2022.3156982
- Huang, J., Wen, S., Liang, W., Guan, W., 2023. Vwr-slam: Tightly coupled slam system based on visible light positioning landmark, wheel odometer, and rgb-d camera. IEEE Transactions on Instrumentation and Measurement 72, 1–12. DOI: 10.1109/TIM.2022.3231332 DOI: https://doi.org/10.1109/TIM.2022.3231332
- Li, R., Liu, J., Zhang, L., Hang, Y., 2014. Lidar/mems imu integrated navigation (slam) method for a small uav in indoor environments. In: 2014 DGON inertial sensors and systems (ISS). IEEE, pp. 1–15. DOI: 10.1109/InertialSensors.2014.7049479 DOI: https://doi.org/10.1109/InertialSensors.2014.7049479
- Lin, W., Hu, J., Xu, H., Ye, C., Ye, X., Li, Z., 2017. Graph-based slam in indoor environment using corner feature from laser sensor. In: 2017 32nd Youth academic annual conference of chinese association of automation (YAC). IEEE, pp. 1211–1216. DOI: 10.1109/YAC.2017.7967597 DOI: https://doi.org/10.1109/YAC.2017.7967597
- Prieto-Fernández, N., Fernández-Blanco, S., Fernández-Blanco, Á., Benítez-Andrades, J. A., Carro-De-Lorenzo, F., Benavides, C., 2023. Weighted conformal lidar-mapping for structured slam. IEEE Transactions on Instrumentation and Measurement 72, 1–10. DOI: 10.1109/TIM.2023.3284143 DOI: https://doi.org/10.1109/TIM.2023.3284143
- Schuster, F., Keller, C. G., Rapp, M., Haueis, M., Curio, C., 2016. Landmark based radar slam using graph optimization. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). pp. 2559–2564. DOI: 10.1109/ITSC.2016.7795967 DOI: https://doi.org/10.1109/ITSC.2016.7795967
- Shi, Z., Wang, P., Liu, W., Gao, C., 2023. Multi-sensor slam assisted by 2d lidar line features. In: International Conference on Haptics and Virtual Reality. Springer, pp. 73–80. DOI: 10.1007/978-3-031-56521-27 DOI: https://doi.org/10.1007/978-3-031-56521-2_7
- Ulas, C., Temeltas, H., 2013. A fast and robust feature-based scan-matching method in 3d slam and the effect of sampling strategies. International Journal of Advanced Robotic Systems 10 (11), 396. DOI: 10.5772/56964 DOI: https://doi.org/10.5772/56964
- Vazquez-Martin, R., Nuñez, P., del Toro, J., Bandera, A., Sandoval, F., 2006. Adaptive observation covariance for ekf-slam in indoor environments using laser data. In: MELECON 2006-2006 IEEE Mediterranean Electrotechnical Conference. IEEE, pp. 445–448. DOI: 10.1109/MELCON.2006.1653134 DOI: https://doi.org/10.1109/MELCON.2006.1653134
- Xing, B. Y., Dang, R. N., Xu, P., Jiang, C. X., Jiang, L., apr 2020. Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507 (5), 052011. DOI: 10.1088/1742-6596/1507/5/052011 DOI: https://doi.org/10.1088/1742-6596/1507/5/052011
- Zeng, Q., Tao, X., Yu, H., Ji, X., Chang, T., Hu, Y., 2023. An indoor 2d lidar slam and localization method based on artificial landmark assistance. IEEE Sensors Journal. DOI: 10.1109/JSEN.2023.3341832 DOI: https://doi.org/10.1109/JSEN.2023.3341832