Analysis and classification of spam email using Artificial Intelligence to identify cyberthreats
ISSN: 1135-5948
Año de publicación: 2024
Número: 72
Páginas: 155-158
Tipo: Artículo
Otras publicaciones en: Procesamiento del lenguaje natural
Resumen
Summary of the Ph.D. thesis written by Francisco Jáñez Martino and supervised by Prof. Dra. Rocío Alaiz Rodríguez and Dr. Víctor González Castro at Universidad de León. The defense of the thesis was in León (Spain) in 21st of December 2023 by a committee formed by Dr. Arturo Montejo Ráez (Universidad de Jaén, Spain), Dr. Petr Motlicek (Idiap Research Institute, Switzerland), and Dra. Laura Fernández Robles (Universidad de León, Spain). An international mention was garnered following a six-month tenure at the Universitá di Bologna under the supervision of Dr. Alberto Barrón Cedeño. This Ph.D. thesis was awarded an outstanding Cum Laude grade.
Referencias bibliográficas
- Da San Martino, G., S. Yu, A. Barrón-Cedeño, R. Petrov, and P. Nakov. 2019. Fine-grained analysis of propaganda in news article. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5636–5646.
- Dada, E. G., J. S. Bassi, H. Chiroma, S. M. Abdulhamid, A. O. Adetunmbi, and O. E. Ajibuwa. 2019. Machine learning for email spam filtering: review, approaches and open research problems. Heliyon, 5(6):e01802.
- Devlin, J., M. Chang, K. Lee, and K. Toutanova. 2018. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. CoRR, abs/1810.04805:1–16.
- Ferreira, A., L. Coventry, and G. Lenzini. 2015. Principles of persuasion in social engineering and their use in phishing. In T. Tryfonas and I. Askoxylakis, editors, Human Aspects of Information Security, Privacy, and Trust, pages 36–47, Cham. Springer International Publishing. Gallo, L., A. Maiello, A. Botta, and G. Ventre. 2021. 2 years in the anti-phishing group of a large company. Computers & Security, 105:102259.
- Jáñez Martino, F., R. Alaiz-Rodríguez, V. González-Castro, and E. Fidalgo. 2021. Trustworthiness of spam email addresses using machine learning. In Proceedings of the 21st ACM Symposium on Document Engineering, DocEng ’21, page 4, New York, NY, USA. Association for Computing Machinery.
- Jáñez -Martino, F., R. Alaiz-Rodríguez, V. González-Castro, E. Fidalgo, and E. Alegre. 2022. A review of spam email detection: analysis of spammer strategies and the dataset shift problem. Artificial Intelligence Review, 56:1145–1173.
- Jáñez -Martino, F., R. Alaiz-Rodríguez, V. González-Castro, E. Fidalgo, and E. Alegre. 2023. Classifying spam emails using agglomerative hierarchical clustering and a topic-based approach. Applied Soft Computing, 139:110226.
- Jáñez -Martino, F., E. Fidalgo, S. González-Martínez, and J. Velasco-Mata. 2020. Classification of spam emails through hierarchical clustering and supervised learning.