Machinability of Selective Laser Melted 17-4 PH Stainless Steel in Turning Process
- Fernández Abia, Ana Isabel 1
- Rodríguez González, Pablo 1
- Castro Sastre, María Ángeles 1
- Giganto, Sara 1
-
1
Universidad de León
info
ISSN: 1662-9795
Año de publicación: 2023
Volumen: 956
Páginas: 127-133
Tipo: Artículo
Otras publicaciones en: Key Engineering Materials
Referencias bibliográficas
- A. H. Maamoun, Y. F. Xue, M. A. Elbestawi, and S. C. Veldhuis, Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization, Density, Surface Roughness, and Dimensional Accuracy, Materials. 11 (2018) 2343.
- R. Teimouri, H. Sohrabpoor, M. Grabowski, D. Wyszyński, S. Skoczypiec, and R. Raghavendra, Simulation of surface roughness evolution of additively manufactured material fabricated by laser powder bed fusion and post-processed by burnishing, J. Manuf. Process. 84 (2022) 10–27.
- L. Cao, J. Li, J. Hu, H. Liu, Y. Wu, and Q. Zhou, Optimization of surface roughness and dimensional accuracy in LPBF additive manufacturing, Opt. Laser Technol. 142 (2021).
- B. S. Rupal, N. Anwer, M. Secanell, and A. J. Qureshi, Geometric tolerance and manufacturing assemblability estimation of metal additive manufacturing (AM) processes, Mater. Des. 194 (2020).
- S. Bagehorn, J. Wehr, and H. J. Maier, Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts, Int. J. Fatigue 102 (2017) 135–142.
- S. Pathak et al., Surface integrity of SLM manufactured meso-size gears in laser shock peening without coating, J. Manuf. Process. 85 (2023) 764–773.
- Z. Baicheng et al., Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing, Mater. Des. 116 (2017) 531–537.
- W. Du, Q. Bai, and B. Zhang, A Novel Method for Additive/Subtractive Hybrid Manufacturing of Metallic Parts, Procedia Manuf. 5 (2016) 1018–1030.
- G. Ren, S. Guo, and B. Zhang, Surface Integrity of Inconel 738LC Parts Manufactured by Selective Laser Melting Followed by High-speed Milling, Chinese J. Mech. Eng. 36 (2023) 1–15.
- H. Eskandari, H. R. Lashgari, L. Ye, M. Eizadjou, and H. Wang, Microstructural characterization and mechanical properties of additively manufactured 17–4PH stainless steel, Mater. Today Commun., 30 (2022) 103075.
- Y. Sun, R. J. Hebert, and M. Aindow, Effect of laser scan length on the microstructure of additively manufactured 17-4PH stainless steel thin-walled parts, Addit. Manuf. 35 (2020) 101302.
- P. Guo, B. Zou, C. Huang, and H. Gao, Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition, J. Mater. Process. Technol. 240 (2017) 12–22.
- G. Struzikiewicz, W Zȩbala, A. Matras, M. Machno, L. Ślusarczyk, S. Hichert, F. Laufer, Turning research of additive laser molten stainless steel 316L obtained by 3D printing, Materials 12 (2019) 182.
- Y. Kaynak and O. Kitay, Porosity, Surface Quality, Microhardness and Microstructure of Selective Laser Melted 316L Stainless Steel Resulting from Finish Machining, J. Manuf. Mater. Process.2 (2018) 36.
- M. Shunmugavel, A. Polishetty, J. Nomani, M. Goldberg, and G. Littlefair, Metallurgical and Machinability Characteristics of Wrought and Selective Laser Melted Ti-6Al-4V, J. Metall.(2016) ID 7407918.
- G. Le Coz, M. Fischer, R. Piquard, A. D'Acunto, P. Laheurte, and D. Dudzinski, Micro Cutting of Ti-6Al-4V Parts Produced by SLM Process, Procedia CIRP 58 (2017) 228-232.
- R. Vinayagamoorthy and M. A. Xavior, Surface integrity of ti-6al-4v precision machining using coated carbide tools under dry cutting condition, Lect. Notes Mech. Eng.(2012) 317–324.