Albocycline Is the Main Bioactive Antifungal Compound Produced by Streptomyces sp. OR6 against Verticillium dahliae

  1. Calvo-Peña, Carla 1
  2. Cobos, Rebeca 1
  3. Sánchez-López, José María 2
  4. Ibañez, Ana 1
  5. Coque, Juan José R. 1
  1. 1 Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, Spain
  2. 2 Biomar Microbial Technologies, Armunia, 24009 León, Spain
Journal:
Plants

ISSN: 2223-7747

Year of publication: 2023

Volume: 12

Issue: 20

Pages: 3612

Type: Article

DOI: 10.3390/PLANTS12203612 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Plants

Metrics

Cited by

  • Scopus Cited by: 1 (27-01-2024)
  • Web of Science Cited by: 0 (11-12-2023)
  • Dimensions Cited by: 2 (14-02-2024)

JCR (Journal Impact Factor)

(Indicator corresponding to the last year available on this portal, year 2022)
  • Year 2022
  • Journal Impact Factor: 4.5
  • Journal Impact Factor without self cites: 4.0
  • Article influence score: 0.623
  • Best Quartile: Q1
  • Area: PLANT SCIENCES Quartile: Q1 Rank in area: 43/239 (Ranking edition: SCIE)

SCImago Journal Rank

(Indicator corresponding to the last year available on this portal, year 2022)
  • Year 2022
  • SJR Journal Impact: 0.79
  • Best Quartile: Q1
  • Area: Plant Science Quartile: Q1 Rank in area: 94/513
  • Area: Ecology, Evolution, Behavior and Systematics Quartile: Q1 Rank in area: 153/706
  • Area: Ecology Quartile: Q1 Rank in area: 100/449

Scopus CiteScore

(Indicator corresponding to the last year available on this portal, year 2022)
  • Year 2022
  • CiteScore of the Journal : 5.4
  • Area: Plant Science Percentile: 83
  • Area: Ecology, Evolution, Behavior and Systematics Percentile: 82
  • Area: Ecology Percentile: 80

Journal Citation Indicator (JCI)

(Indicator corresponding to the last year available on this portal, year 2022)
  • Year 2022
  • Journal Citation Indicator (JCI): 1.04
  • Best Quartile: Q1
  • Area: PLANT SCIENCES Quartile: Q1 Rank in area: 43/264

Dimensions

(Data updated as of 14-02-2024)
  • Total citations: 2
  • Recent citations (2 years): 2

Funding information

Funders

  • Rio Lacarón S.L.
  • Junta de Castilla y León
  • European Social Fund
  • University of León
    • UP2021-025
  • European Recovery Instrument European Union—NextGenerationEU

Bibliographic References

  • Inderbitzin, (2014), Phytopathology, 104, pp. 564, 10.1094/PHYTO-11-13-0315-IA
  • Klosterman, (2009), Annu. Rev. Phytopathol., 47, pp. 39, 10.1146/annurev-phyto-080508-081748
  • Keykhasaber, (2018), Eur. J. Plant Pathol., 150, pp. 21, 10.1007/s10658-017-1273-y
  • Gent, (2012), Plant Manag. Netw., 13, pp. 14
  • (2011), Plant Soil, 344, pp. 1, 10.1007/s11104-010-0629-2
  • Castro, D., Torres, M., Sampedro, I., Martínez-Checa, F., Torres, B., and Béjar, V. (2020). Biological Control of Verticillium Wilt on Olive Trees by the Salt-Tolerant Strain Bacillus velezensis XT1. Microorganisms, 8.
  • Food and Agriculture Organization of the United Nations (FAO) (2014). FAOSTAT Database, Crops Processed, Data for Olive Oil, FAO.
  • Ministerio de Agricultura (2020, July 10). Alimentación y Medio Ambiente (MAGRAMA). Avances de Superficies y Producciones de Cultivos, Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/avances-superficies-producciones-agricolas/2012-2015.aspx.
  • Roca, (2010), Phytopathol. Mediterr., 49, pp. 370
  • Montes-Osuna, N., and Mercado-Blanco, J. (2020). Verticillium Wilt of Olive and Its Control: What Did We Learn during the Last Decade?. Plants, 9.
  • Gadd, (2020), Advances in Applied Microbiology, Volume 111, pp. 123, 10.1016/bs.aambs.2020.01.003
  • Mulero-Aparicio, A., Agustí-Brisach, C., Varo, Á., López-Escudero, F.J., and Trapero, A. (2019). A Non-Pathogenic Strain of Fusarium oxysporum as a Potential Biocontrol Agent against Verticillium Wilt of Olive. Biol. Control, 139.
  • Mulero-Aparicio, A., Cernava, T., Turrà, D., Schaefer, A., di Pietro, A., López-Escudero, F.J., Trapero, A., and Berg, G. (2019). The Role of Volatile Organic Compounds and Rhizosphere Competence in Mode of Action of the Non-Pathogenic Fusarium oxysporum FO12 toward Verticillium Wilt. Front. Microbiol., 10.
  • Monte, (2016), Crop Prot., 88, pp. 45, 10.1016/j.cropro.2016.05.009
  • Varo, (2016), J. Appl. Microbiol., 121, pp. 767, 10.1111/jam.13199
  • (2017), Crop Prot., 100, pp. 186, 10.1016/j.cropro.2017.06.026
  • Boutaj, (2019), Res. J. Biotechnol., 14, pp. 79
  • Boutaj, (2020), J. Plant Dis. Prot., 127, pp. 349, 10.1007/s41348-020-00323-z
  • Sesmero, (2017), Plant Soil, 417, pp. 433, 10.1007/s11104-017-3269-y
  • Legarda, (2018), Front. Microbiol., 9, pp. 277, 10.3389/fmicb.2018.00277
  • Markakis, (2016), BioControl, 61, pp. 293, 10.1007/s10526-015-9669-0
  • Cheffi Azabou, M., Gharbi, Y., Medhioub, I., Ennouri, K., Barham, H., Tounsi, S., and Triki, M.A. (2020). The Endophytic Strain Bacillus velezensis OEE1: An Efficient Biocontrol Agent against Verticillium Wilt of Olive and a Potential Plant Growth Promoting Bacteria. Biol. Control, 142.
  • Bubici, (2018), CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour., 13, pp. 1
  • Labeda, (2012), Antonie Van Leeuwenhoek, 101, pp. 73, 10.1007/s10482-011-9656-0
  • Worsley, (2017), FEMS Microbiol. Rev., 41, pp. 392, 10.1093/femsre/fux005
  • Vurukonda, S.S.K.P., Giovanardi, D., and Stefani, E. (2018). Plant Growth Promoting and Biocontrol Activity of Streptomyces spp. as Endophytes. Int. J. Mol. Sci., 19.
  • Janssen, (2006), Appl. Environ. Microbiol., 72, pp. 1719, 10.1128/AEM.72.3.1719-1728.2006
  • Deketelaere, S., Tyvaert, L., França, S.C., and Höfte, M. (2017). Desirable Traits of a Good Biocontrol Agent against Verticillium Wilt. Front. Microbiol., 8.
  • Rong, (2012), Syst. Appl. Microbiol., 35, pp. 7, 10.1016/j.syapm.2011.10.004
  • Shirling, (1966), Int. J. Syst. Bacteriol., 16, pp. 313, 10.1099/00207713-16-3-313
  • Reusser, (1969), J. Bacteriol., 100, pp. 11, 10.1128/jb.100.1.11-13.1969
  • Liang, (2018), Bioorg. Med. Chem., 26, pp. 3453, 10.1016/j.bmc.2018.05.017
  • Christner, (1998), J. Antibiot., 51, pp. 368, 10.7164/antibiotics.51.368
  • Zucchi, (2010), BioControl, 55, pp. 811, 10.1007/s10526-010-9295-9
  • Zucchi, (2014), Ind. Crops Prod., 52, pp. 264, 10.1016/j.indcrop.2013.10.033
  • Gu, C.Z., Yuan, S.H., Jing, L., Qiao, Y.J., Song, Y.Y., Abdalla Elzaki, M.E., Yang, C.R., Zhang, Y.J., and Zeng, R. (2019). Sen Albocycline-Type Macrolides with Antibacterial Activities from Streptomyces sp. 4205. Chem. Biodivers., 16.
  • Ohike, (2018), J. Agric. Sci., 10, pp. 54
  • Koyama, (2013), J. Antibiot., 66, pp. 303, 10.1038/ja.2012.122
  • Nagahama, (1971), Chem. Pharm. Bull., 19, pp. 619, 10.1248/cpb.19.649
  • Thomas, (1982), J. Antibiot., 35, pp. 1658, 10.7164/antibiotics.35.1658
  • Stukenbrock, (2023), Nature, 617, pp. 31, 10.1038/d41586-023-01465-4
  • Bebber, (2014), Glob. Ecol. Biogeogr., 23, pp. 1398, 10.1111/geb.12214
  • Almeida, F., Rodrigues, M.L., and Coelho, C. (2019). The Still Underestimated Problem of Fungal Diseases Worldwide. Front. Microbiol., 10.
  • Belt, (2021), Front. Plant Sci., 12, pp. 707509, 10.3389/fpls.2021.707509
  • (2005), J. Antibiot., 58, pp. 1, 10.1038/ja.2005.1
  • Kolnaar, (2019), Front. Plant Sci., 10, pp. 845, 10.3389/fpls.2019.00845
  • Ilyina, (2021), Front. Sustain. Food Syst., 5, pp. 696518, 10.3389/fsufs.2021.696518
  • Nagahama, (1967), J. Antibiot., 20, pp. 261
  • Harada, (1984), J. Antibiot., 37, pp. 1187, 10.7164/antibiotics.37.1187
  • Furumai, (1968), J. Antibiot., 21, pp. 85, 10.7164/antibiotics.21.85
  • Miyairi, (1966), J. Antibiot., 19, pp. 56
  • Daher, S.S., Franklin, K.P., Scherzi, T., Dunman, P.M., and Andrade, R.B. (2020). Synthesis and Biological Evaluation of Semi-Synthetic Albocycline Analogs. Bioorg. Med. Chem. Lett., 30.
  • Slechta, (1978), J. Antibiot., 31, pp. 319, 10.7164/antibiotics.31.319
  • Williams, (1964), Nature, 202, pp. 928, 10.1038/202928a0
  • Kieser, T., Bibb, M., Buttner, M., Chater, K., and Hopwood, D. (2000). Practical Streptomyces Genetics, John Innes Foundation.
  • Hopwood, D.A., Bibb, M.J., Chater, K.F., Bruton, C.J., Kieser, H.M., Lydiate, D., Smith, C.P., Ward, J.M., and Schrempf, H. (1985). Genetic Manipulation of Streptomyces: A Laboratory Manual, The John Innes Institute.
  • Stackebrandt, E., and Goodfellow, M. (1991). Nucleic Acid Techniques in Bacterial Systematics, John Wiley and Sons.
  • Kim, (2012), Int. J. Syst. Evol. Microbiol., 62, pp. 716, 10.1099/ijs.0.038075-0
  • Kimura, (1980), J. Mol. Evol., 16, pp. 111, 10.1007/BF01731581
  • Guo, (2008), Int. J. Syst. Evol. Microbiol., 58, pp. 149, 10.1099/ijs.0.65224-0
  • Rong, (2009), Syst. Appl. Microbiol., 32, pp. 314, 10.1016/j.syapm.2009.05.003
  • Cobos, (2017), Appl. Environ. Microbiol., 83, pp. e01564-17, 10.1128/AEM.01564-17
  • (2006), Phytopathology, 96, pp. 485, 10.1094/PHYTO-96-0485
  • Senthilkumar, M., Amaresan, N., and Sankaranarayanan, A. (2021). Plant-Microbe Interactions. Springer Protocols Handbooks, Humana.
  • Martin, (1976), Eur. J. Appl. Microbiol., 3, pp. 135, 10.1007/BF00928432
  • Schrey, S.D., Erkenbrack, E., Früh, E., Fengler, S., Hommel, K., Horlacher, N., Schulz, D., Ecke, M., Kulik, A., and Fiedler, H.P. (2012). Production of Fungal and Bacterial Growth Modulating Secondary Metabolites Is Widespread among Mycorrhiza-Associated Streptomycetes. BMC Microbiol., 12.
  • Tan, K.H. (2005). Soil Sampling, Preparation, and Analysis, CRC Press. [2nd ed.].
  • Batjes, (1996), Eur. J. Soil Sci., 47, pp. 151, 10.1111/j.1365-2389.1996.tb01386.x
  • Ostrowska, (1991), IOŚ Warszawa, 334, pp. 158
  • Houba, (2000), Commun. Soil Sci. Plant Anal., 31, pp. 1299, 10.1080/00103620009370514
  • Das, R., Romi, W., Das, R., Sharma, H.K., and Thakur, D. (2018). Antimicrobial Potentiality of Actinobacteria Isolated from Two Microbiologically Unexplored Forest Ecosystems of Northeast India. BMC Microbiol., 18.
  • Awla, H.K., and Rashid, T.S. (2020). HPLC Fractionation: A Comparative Analysis of Anti-Fungal Compounds from Different Streptomyces Isolates Inhibiting Colletotrichum acutatum. Biocatal Agric. Biotechnol., 27.
  • López-Moral, A., Agustí-Brisach, C., Leiva-Egea, F.M., and Trapero, A. (2022). Influence of Cultivar and Biocontrol Treatments on the Effect of Olive Stem Extracts on the Viability of Verticillium dahliae Conidia. Plants, 11.
  • Bauer, (1966), Am. J. Clin. Pathol., 45, pp. 493, 10.1093/ajcp/45.4_ts.493
  • Tenover, F.C. (2019). Encyclopedia of Microbiology, Academic Press.