Effects of therapeutic zno and antibiotics and its withdrawal on the microbiome of weaned pigs

  1. Ortiz Sanjuán, Juan Manuel
Dirigida por:
  1. Juan J. Garrido-Pavón Director/a
  2. Héctor Argüello Rodríguez Director
  3. Edgar García Manzanilla Director/a

Universidad de defensa: Universidad de Córdoba (ESP)

Fecha de defensa: 20 de diciembre de 2022

Tribunal:
  1. Jordi Estellé Fabrellas Presidente/a
  2. Julia Calderón Secretario/a
  3. Sara Zaldívar Vocal

Tipo: Tesis

Resumen

1. Introducción o motivación de la tesis: La diarrea pos-destete (PWD, del inglés post-weaning diarrhoea) es una enfermedad infecciosa que causa pérdidas productivas y económicas en producción porcina y que a menudo requiere el uso de antimicrobianos. El uso profiláctico y metafiláctico de estos antimicrobianos para el tratamiento de la PWD está sujeto a cada vez más restricciones, especialmente en la UE, debido al riesgo de resistencias antimicrobianas. El óxido de zinc (ZnO) usado en concentraciones de 1500 a 3000ppm (referidas como concentraciones terapéuticas o farmacológicas) también se usa como un tratamiento eficaz para prevenir la PWD. Su uso se prohibió el 28 de julio de 2022 en la UE debido al riesgo ambiental de contaminación del suelo asociado a su uso. Encontrar estrategias alternativas al uso de los antibióticos y del ZnO es crucial para mantener los niveles óptimos de salud y bienestar animal, así como la rentabilidad de las granjas, asegurando la producción de alimentos de alta calidad. Un primer paso clave para encontrar estas estrategias alternativas a los antibióticos y el ZnO es entender en detalle sus efectos de en el microbioma y en el animal. Esta tesis se centrar en los efectos en el microbioma. El principal agente causal de la PWD es Escherichia coli enterotoxigénica. El ZnO y los antibióticos son efectivos para controlar el crecimiento excesivo de E. coli durante este período, aunque el mecanismo de acción exacto del ZnO no está totalmente claro. Por otro lado, la disbiosis del microbioma que ocurre en los días posteriores al destete es uno de los nuevos posibles factores de riesgo y a su vez consecuencias descritas de la PWD. Se cree que el ZnO estabiliza el microbioma intestinal, pero hasta el momento, los cambios taxonómicos y funcionales exactos que provoca no están bien caracterizados. En esta tesis, utilizamos la secuenciación del metagenoma completo para caracterizar el efecto que tanto el ZnO como los antibióticos tienen en el microbioma intestinal del cerdo tanto a nivel taxonómico como funcional, en las primeras semanas posteriores al destete. 2.Contenido de la investigación: En el capítulo 2, estudiamos el efecto del ZnO y de la apramicina en la respuesta del microbioma intestinal del cerdo al destete una semana pos-destete. Ambos tuvieron efectos marcados en la taxonomía y funcionalidad del microbioma intestinal. Los cerdos alimentados con dieta control sin ZnO ni antibióticos (Ct) exhibieron una gran abundancia de E. coli, que portaba varios factores de virulencia en animales que no mostraban signos clínicos de diarrea. Este estudio se realizó en una granja experimental de baja patología con altos niveles de higiene y bioseguridad en la que también se evaluaron los efectos de diferentes procedimientos de limpieza. El tratamiento fue el factor con mayor efecto en el microbioma, mientras que los procedimientos de limpieza no tuvieron efectos notables. Dados los resultados observados en el primer estudio, los siguientes estudios descritos en los capítulos 3 y capítulo 4 se realizaron en granjas comerciales para explorar los efectos de los antibióticos y el ZnO en entornos comerciales y la variabilidad entre granjas en la composición del microbioma intestinal. En el capítulo 3, se compararon granjas que usaban antibióticos y ZnO con granjas que los habían retirado. El microbioma de las granjas que utilizaban ZnO y antibióticos exhibió diferencias en los días 7 y 14 posteriores al destete, tanto a nivel de taxonómico como funcional; diferencias más evidentes en muestras de diarrea de 7 días post destete. El análisis del microbioma ambiental reveló una contribución débil al microbioma de los lechones, que compartían algunas especies consideradas como “core” que permanecían en el ambiente limpio de la sala de destete y en muestras iniciales y recogidas a las 2 semanas pos-destete. En el capitulo 4 se estudió el impacto de la retirada de los antibióticos y ZnO en el microbioma porcino en granjas que utilizaban habitualmente antimicrobianos de forma profiláctica y metafiláctica al destete. Los resultados mostraron que los antibióticos, y sobretodo el ZnO, mantienen la composición del microbioma estable (taxonómica y funcionalmente), inhibiendo el crecimiento excesivo de E. coli tanto en condiciones normales como en diarrea. La retirada de ZnO y antibióticos en estas granjas generó un aumento en la abundancia de E. coli, así como genes relacionados con la virulencia asociados a la mayor abundancia de E. coli. Por último, en el capítulo 5, discutimos la utilidad de la secuenciación por medio de “Shotgun” en el estudio de los cambios en el microbioma causados por el ZnO y la diarrea, que podrían desencadenarse por efectos antimicrobianos y no antimicrobianos asociados al ZnO (tanto taxonómica como funcionalmente), y los efectos de ZnO manteniendo la estabilidad del microbioma intestinal durante el período más crítico de la etapa posterior al destete. 3.Conclusión: De los resultados obtenidos en esta tesis, el autor concluye que el destete induce una transición brusca de un microbioma de lechón lactante a un microbioma de cerdo adulto. El uso de antibióticos y ZnO tiene una fuerte influencia en la transición del microbioma después del destete, previniendo la disbiosis intestinal en el microbioma del lechón al inhibir el crecimiento excesivo de E. coli y, por lo tanto, la presencia de sus genes relacionados con factores de virulencia, así como promover una transición estable hacia un microbioma similar al de un animal adulto. Finalmente, la microbiota ambiental (la presente en la sala de destete) ejerció efectos menores en la composición del microbioma de los lechones. 4. Bibliografía: Allen, H. K. et al. (2011) ‘Antibiotics in Feed Induce Prophages in Swine Fecal Microbiomes’, mBio. Edited by G. Jacoby, 2(6). doi: 10.1128/mBio.00260-11. Andreini, C.et al. (2011) ‘Minimal functional sites allow a classification of zinc sites in proteins’, PLoS ONE, 6(10). doi: 10.1371/journal.pone.0026325. Argüello, H. et al. (2018) ‘Early Salmonella Typhimurium infection in pigs disrupts Microbiome composition and functionality principally at the ileum mucosa’, Scientific Reports, 8(1), pp. 1–12. doi: 10.1038/s41598-018-26083-3. Argüello, H. et al. (2019) ‘Influence of the Intestinal Microbiota on Colonization Resistance to Salmonella and the Shedding Pattern of Naturally Exposed Pigs’, mSystems. Edited by D. W. Cleary, 4(2), pp. 1–14. doi: 10.1128/mSystems.00021-19. Asnicar, F. et al. (2015) ‘Compact graphical representation of phylogenetic data and metadata with GraPhlAn’, PeerJ 3:e1029-17. https://doi.org/10.7717/peerj.1029. Bain, C. C. and Cerovic, V. (2020) ‘Interactions of the microbiota with the mucosal immune system’, Clinical and Experimental Immunology, 199(1), pp. 9–11. doi: 10.1111/cei.13400. Baker-Austin, C. et al. (2006) ‘Co-selection of antibiotic and metal resistance’, Trends in Microbiology, 14(4), pp. 176–182. doi: 10.1016/j.tim.2006.02.006. Baümler, A. J. and Sperandio, V. (2016) ‘Interactions between the microbiota and pathogenic bacteria in the gut’, Nature, 535(7610), pp. 85–93. doi: 10.1038/nature18849. Bednorz, C. et al. (2013) ‘The broader context of antibiotic resistance: Zinc feed supplementation of piglets increases the proportion of multi-resistant Escherichia coli in vivo’, International Journal of Medical Microbiology. Elsevier GmbH., 303(6–7), pp. 396–403. doi: 10.1016/j.ijmm.2013.06.004. Beghini, F. et al. (2021) ‘Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with biobakery 3’, Elife, 10:1–42. doi: https://doi.org/10.7554/eLife.65088 Berenguer, P. et al. (2008) ‘Copper and Zinc Soil Accumulation and Plant Concentration in Irrigated Maize Fertilized with Liquid Swine Manure’, Agronomy Journal, 100(4), pp. 1056–1061. doi: 10.2134/agronj2007.0321. Boeckman, J. X. et al. (2022) ‘Effect of chronic and acute enterotoxigenic E. coli challenge on growth performance, intestinal inflammation, microbiome, and metabolome of weaned piglets’, Scientific Reports, 12(1), p. 5024. doi: 10.1038/s41598-022-08446-z. Boers, S. A. et al. (2019) ‘Understanding and overcoming the pitfalls and biases of next-generation sequencing (NGS) methods for use in the routine clinical microbiological diagnostic laboratory’, European Journal of Clinical Microbiology and Infectious Diseases. European Journal of Clinical Microbiology & Infectious Diseases, 38(6), pp. 1059–1070. doi: 10.1007/s10096-019-03520-3. Bolger, A. M. et al. (2014) ‘Trimmomatic: A flexible trimmer for Illumina sequence data’, Bioinformatics, 30(15), pp. 2114–2120. doi: 10.1093/bioinformatics/btu170. Bolhuis, J. E. et al. (2005) ‘Individual coping characteristics, aggressiveness and fighting strategies in pigs’, Animal Behaviour, 69(5), pp. 1085–1091. doi: 10.1016/j.anbehav.2004.09.013. Bonetti, A. et al. (2021) ‘Towards zero zinc oxide: Feeding strategies to manage post-weaning diarrhea in piglets’, Animals, 11(3), pp. 1–24. doi: 10.3390/ani11030642. Bouwhuis, M. A. et al. (2017) ‘Zinc methionine and laminarin have growth-enhancing properties in newly weaned pigs influencing both intestinal health and diarrhoea occurrence’, Journal of Animal Physiology and Animal Nutrition, 101(6). doi: 10.1111/jpn.12647. Brestoff, J. R. and Artis, D. (2013) ‘Commensal bacteria at the interface of host metabolism and the immune system’, Nature Immunology, 14(7), pp. 676–684. doi: 10.1038/ni.2640. Broom, L. J. et al. (2006) ‘Effects of zinc oxide and Enterococcus faecium SF68 dietary supplementation on the performance, intestinal microbiota and immune status of weaned piglets’, Research in Veterinary Science, 80(1), pp. 45–54. doi: 10.1016/j.rvsc.2005.04.004. Buffie, C. G. and Pamer, E. G. (2013) ‘Microbiota-mediated colonization resistance against intestinal pathogens’, Nature Reviews Immunology, 13(11), pp. 790–801. doi: 10.1038/nri3535. Bushnell, B. (2014) ‘BBMap: A Fast, Accurate, Splice-Aware Aligner’. Berkeley, CA (United States). Available at: sourceforge.net/projects/bbmap/. Campbell, J. M. et al. (2013) ‘The biological stress of early weaned piglets’, Journal of Animal Science and Biotechnology, 4(1), pp. 2–5. doi: 10.1186/2049-1891-4-19. Cao, Z. et al. (2016). ‘Effect of dietary fiber on the methanogen community in the hindgut of Lantang gilts’, Animal 10:1666–1676. https://doi.org/10.1017/S1751731116000525. Chapman, J. S. (2003) ‘Disinfectant resistance mechanisms, cross-resistance, and co-resistance’, International Biodeterioration & Biodegradation, 51(4), pp. 271–276. doi: 10.1016/S0964-8305(03)00044-1. Che, L. et al. (2019) ‘Inter-correlated gut microbiota and SCFAs changes upon antibiotics exposure links with rapid body-mass gain in weaned piglet model’, Journal of Nutritional Biochemistry, 74, pp. 1–10. doi: 10.1016/j.jnutbio.2019.108246. Chen, H. (2018) ‘VennDiagram: generate high-resolution Venn and Euler plots’, https://cran.r-project.org/package=VennDiagram. Chen, C. et al. (2021) ‘Expanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiome’, Nature Communications, 12(1), p. 1106. doi: 10.1038/s41467-021-21295-0. Chen, L. et al. (2017) ‘The Maturing Development of Gut Microbiota in Commercial Piglets during the Weaning Transition’, Frontiers in Microbiology, 8. doi: 10.3389/fmicb.2017.01688. Chen, X. et al. (2018) ‘Co-occurrence of early gut colonization in neonatal piglets with microbiota in the maternal and surrounding delivery environments’, Anaerobe. Elsevier Ltd, 49, pp. 30–40. doi: 10.1016/j.anaerobe.2017.12.002. Connelly, S. et al. (2018) ‘Distinct consequences of amoxicillin and ertapenem exposure in the porcine gut microbiome’, Anaerobe. Elsevier Ltd, 53, pp. 82–93. doi: 10.1016/j.anaerobe.2018.04.012. Conway, E. et al. (2022) ‘Selenium-Enriched Mushroom Powder Enhances Intestinal Health and Growth Performance in the Absence of Zinc Oxide in Post-Weaned Pig Diets’, Animals, 12(12). doi: 10.3390/ani12121503. Cremonesi, P. et al. (2022) ‘Gut microbiome modifications over time when removing in-feed antibiotics from the prophylaxis of post-weaning diarrhea in piglets’, PLoS ONE, 17(3 March), pp. 1–21. doi: 10.1371/journal.pone.0262199. Cullin, N. et al. (2021) ‘Microbiome and cancer’, Cancer Cell, 39(10), pp. 1317–1341. doi: 10.1016/j.ccell.2021.08.006. da Silva, C. A. et al. (2021) ‘Impact of zinc oxide, benzoic acid and probiotics on the performance and cecal microbiota of piglets’, Animal Microbiome. BioMed Central, 3(1). doi: 10.1186/s42523-021-00151-y. Davin, R. et al. (2013). ‘Effect of weaning and in-feed high doses of zinc oxide on zinc levels in different body compartments of piglets’. J Anim Physiol Anim Nutr (Berl) 97:6–12. https://doi.org/ 10.1111/jpn.12046. De Briyne, N. et al. (2014) ‘Antibiotics used most commonly to treat animals in Europe’, Veterinary Record, 175(13), pp. 325–325. doi: 10.1136/vr.102462. Djordjevic, S. P. et al. (2013) ‘Mobile elements, zoonotic pathogens and commensal bacteria: conduits for the delivery of resistance genes into humans, production animals and soil microbiota’, Frontiers in Microbiology, 4. doi: 10.3389/fmicb.2013.00086. Dominguez-Bello, M. G. et al. (2019) ‘Role of the microbiome in human development’, Gut, 68(6), pp. 1108–1114. doi: 10.1136/gutjnl-2018-317503. Dou, S. et al. (2017) ‘Characterisation of Early-Life Fecal Microbiota in Susceptible and Healthy Pigs to Post-Weaning Diarrhoea’, PloS one, 12(1), p. e0169851. doi: 10.1371/journal.pone.0169851. Dowley, A. et al. (2022) ‘The effects of dietary supplementation with mushroom or vitamin D2 enriched mushroom powders on finisher pig performance and meat quality’, Animal Feed Science and Technology, 288. doi: 10.1016/j.anifeedsci.2022.115313. Du, H. et al. (2022) ‘Effects of Bacillus amyloliquefaciens TL106 Isolated from Tibetan Pigs on Probiotic Potential and Intestinal Microbes in Weaned Piglets’, Microbiology Spectrum. Edited by H. Wang, 10(1). doi: 10.1128/spectrum.01205-21. European Commission (2019) ‘Regulation (EU) 2019/4 of the European Parliament and of the Council of 11 December 2018 on the manufacture, placing on the market and use of medicated feed, amending Regulation (EC) No 183/2005 of the European Parliament’, Oj L, 4(7.1.2019), pp. 1–23. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0004&from=EN. European Commission (2019) ‘Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on veterinary medicinal products and repealing Directive 2001/82/EC’, Official Journal of the European Union, L4(726), pp. 43–167. Available at: https://eur-lex.europa.eu/legal-content/ EN/TXT/PDF/?uri=CELEX:32019R0006&from=EN%0Ahttps://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0006&qid=1552299700950&from=EN. Eriksen, E. Ø. et al. (2021) ‘Post-weaning diarrhea in pigs weaned without medicinal zinc: risk factors, pathogen dynamics, and association to growth rate’, Porcine Health Management. BioMed Central, 7(1), pp. 1–19. doi: 10.1186/s40813-021-00232-z. European Commission (2016) ‘COMMISSION IMPLEMENTING REGULATION (EU) 2016/1095 of 6 July 2016’, 6(July). European Commission (2022) ‘COMMISSION IMPLEMENTING REGULATION (EU) 2022/1255 of 19 July 2022’. Eurostat. Data Browser. Slaughtering in slaughterhouses - annual data. (2021). Available at: https://ec.europa.eu/eurostat/databrowser/view/APRO_MT_PANN__custom_3399727/default/table?lang=en. Fairbrother, J. M. and Nadeau, É. (2019) ‘Colibacillosis’, in Jeffrey J. Zimmerman Locke A. Karriker Alejandro Ramirez Kent J. Schwartz Gregory W. Stevenson Jianqiang Zhang (ed.) Diseases of Swine. Eleventh E. Wiley, pp. 807–834. doi: 10.1002/9781119350927.ch52. Fairbrother, J. M. et al. (2005) ‘Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies.’, Animal health research reviews, 6(1), pp. 17–39. doi: 10.1079/AHR2005105. Fassarella, M. et al. (2021) ‘Gut microbiome stability and resilience: Elucidating the response to perturbations in order to modulate gut health’, Gut, 70(3), pp. 595–605. doi: 10.1136/gutjnl-2020-321747. Feng, Y. et al. (2021) ‘Metagenome-assembled genomes and gene catalog from the chicken gut microbiome aid in deciphering antibiotic resistomes’, Communications Biology, 4(1), p. 1305. doi: 10.1038/s42003-021-02827-2. Fox, J. and Weisberg, S. (2019). ‘An R companion to applied regression’, 3rd ed. Sage, Thousand Oaks, CA. https://socialsciences.mcmaster.ca/jfox/Books/ Companion/. Frese, S. A. et al. (2015) ‘Diet shapes the gut microbiome of pigs during nursing and weaning’, Microbiome. Microbiome, 3(1), pp. 1–10. doi: 10.1186/s40168-015-0091-8. Fröhlich, E. E. and Fröhlich, E. (2016). ‘Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota’. Int J Mol Sci 17:509. https://doi.org/10.3390/ijms17040509. Gaio, D. et al. (2021) ‘weaning shifts in microbiome composition and metabolism revealed by over 25 000 pig gut metagenome-assembled genomes’. doi: 10.1099/mgen.0.000501. Gaio, D. et al. (2022) ‘Phylogenetic diversity analysis of shotgun metagenomic reads describes gut microbiome development and treatment effects in the post-weaned pig’, pp. 1–24. doi: 10.1371/journal.pone.0270372. Galloway-Peña, J. and Hanson, B. (2020) ‘Tools for Analysis of the Microbiome’, Digestive Diseases and Sciences, 65(3), pp. 674–685. doi: 10.1007/s10620-020-06091-y. Gao, J. et al. (2019) ‘What Is the Impact of Diet on Nutritional Diarrhea Associated with Gut Microbiota in Weaning Piglets: A System Review’, BioMed Research International, 2019. doi: 10.1155/2019/6916189. Gao, K. et al. (2018a) ‘Antibiotics-induced modulation of large intestinal microbiota altered aromatic amino acid profile and expression of neurotransmitters in the hypothalamus of piglets’, Journal of Neurochemistry, 146(3), pp. 219–234. doi: 10.1111/jnc.14333. Gao, K. et al. (2018b) ‘Time-course responses of ileal and fecal microbiota and metabolite profiles to antibiotics in cannulated pigs’, Applied Microbiology and Biotechnology, 102(5), pp. 2289–2299. doi: 10.1007/s00253-018-8774-2. García, V. et al. (2020) ‘F4- and F18-Positive Enterotoxigenic Escherichia coli Isolates from Diarrhea of Postweaning Pigs: Genomic Characterization’, Applied and Environmental Microbiology. Edited by D. Ercolini, 86(23). doi: 10.1128/AEM.01913-20. Ghanbari, M. et al. (2019) ‘The dynamics of the antibiotic resistome in the feces of freshly weaned pigs following therapeutic administration of oxytetracycline’, Scientific Reports, 9(1), pp. 1–11. doi: 10.1038/s41598-019-40496-8. Gielda, L. M. and DiRita, V. J. (2012) ‘Zinc Competition among the Intestinal Microbiota’, mBio. Edited by B. B. Finlay, 3(4). doi: 10.1128/mBio.00171-12. Giguère, S. (2013) ‘1 General Principles of Antimicrobial Therapy’, in Antimicrobial Therapy in Veterinary Medicine. Fifth. Wiley-Blackwell, p. 3. Graves, S. et al. (2019). ‘multcompView: visualizations of paired comparisons’, https://rdrr.io/cran/multcompView/. Gresse, R. et al. (2017) ‘Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health’, Trends in Microbiology. doi: 10.1016/j.tim.2017.05.004. Grilli, E. et al. (2015) ‘Low doses of microencapsulated zinc oxide improve performance and modulate the ileum architecture, inflammatory cytokines and tight junctions expression of weaned pigs’, Animal. Elsevier, 9(11), pp. 1760–1768. doi: 10.1017/S1751731115001329. Guevarra, R. B. et al. (2019) ‘Piglet gut microbial shifts early in life: Causes and effects’, Journal of Animal Science and Biotechnology. doi: 10.1186/s40104-018-0308-3. Haas, B. and Grenier, D. (2018) ‘Understanding the virulence of Streptococcus suis: A veterinary, medical, and economic challenge’, Medecine et Maladies Infectieuses. Elsevier Masson SAS, 48(3), pp. 159–166. doi: 10.1016/j.medmal.2017.10.001. Hahn, J. D. and Baker, D. H. (1993) ‘Growth and plasma zinc responses of young pigs fed pharmacologic levels of zinc’, Journal of Animal Science, 71(11), pp. 3020–3024. doi: 10.2527/1993.71113020x. Han S. K. and Kim, D. H. (2019). ‘Lactobacillus mucosae and Bifidobacterium longum synergistically alleviate immobilization stress-induced anxiety/depression in mice by suppressing gut dysbiosis’, J Microbiol Biotechnol 29:1369–1374. https://doi.org/10.4014/jmb.1907.07044. Han, H. et al. (2022) ‘Effects of chlortetracycline on growth performance and intestinal functions in weaned piglets’, Journal of Applied Microbiology, 132(3), pp. 1760–1767. doi: 10.1111/jam.15364. Han, J. H. et al. (2018) ‘Effects of the lipid-coated zinc oxide dietary supplement on intestinal mucosal morphology and gene expression associated with the gut health in weanling pigs challenged with enterotoxigenic escherichia coli K88’, Canadian Journal of Animal Science, 98(3), pp. 538–547. doi: 10.1139/cjas-2017-0127. Hancock, V., Dahl, M. and Klemm, P. (2010) ‘Abolition of Biofilm Formation in Urinary Tract Escherichia coli and Klebsiella Isolates by Metal Interference through Competition for Fur’, Applied and Environmental Microbiology, 76(12), pp. 3836–3841. doi: 10.1128/AEM.00241-10. Hedemann, M. S., Jensen, B. B. and Poulsen, H. D. (2006) ‘Influence of dietary zinc and copper on digestive enzyme activity and intestinal morphology in weaned pigs1’, Journal of Animal Science, 84(12), pp. 3310–3320. doi: 10.2527/jas.2005-701. Hill, G. M. et al. (2001) ‘Effect of pharmacological concentrations of zinc oxide with or without the inclusion of an antibacterial agent on nursery pig performance.’, Journal of Animal Science, 79(4), p. 934. doi: 10.2527/2001.794934x. Højberg, O. et al. (2005) ‘Influence of Dietary Zinc Oxide and Copper Sulfate on the Gastrointestinal Ecosystem in Newly Weaned Piglets’, 71(5), pp. 2267–2277. doi: 10.1128/AEM.71.5.2267. Holman, D. B. et al. (2017). ‘Meta-analysis to define a core microbiota in the swine gut’, mSystems 2:e00004-17. https:// doi.org/10.1128/mSystems.00004-17. Holmes, A. H. et al. (2016) ‘Understanding the mechanisms and drivers of antimicrobial resistance’, The Lancet, 387(10014), pp. 176–187. doi: 10.1016/S0140-6736(15)00473-0. Hothorn T, H. K. (2022) ‘exactRankTests: Exact Distributions for Rank and Permutation Tests’. R package version 0.8-35. Available at: https://cran.r-project.org/package=exactRankTests. Hou, G. et al. (2021) ‘Chitosan-chelated zinc modulates ileal microbiota, ileal microbial metabolites, and intestinal function in weaned piglets challenged with Escherichia coli K88’, Applied Microbiology and Biotechnology. Springer Berlin Heidelberg, 105(19), pp. 7529–7544. doi: 10.1007/s00253-021-11496-4. Hu, C. et al. (2013a) ‘Diosmectite-zinc oxide composite improves intestinal barrier function, modulates expression of pro-inflammatory cytokines and tight junction protein in early weaned pigs’, British Journal of Nutrition, 110(4), pp. 681–688. doi: 10.1017/S0007114512005508. Hu, C. H. et al. (2013b) ‘Effects of zinc oxide supported on zeolite on growth performance, intestinal microflora and permeability, and cytokines expression of weaned pigs’, Animal Feed Science and Technology. doi: 10.1016/j.anifeedsci.2013.02.003. Inkscape Project (2020) ‘Inkscape’. Available at: https://inkscape.org. Inoue, R. et al. (2005) ‘Development of the intestinal microbiota in the piglet’, The Journal of General and Applied Microbiology, 51(4), pp. 257–265. doi: 10.2323/jgam.51.257. Jang, I. et al. (2014) ‘Effects of a lipid-encapsulated zinc oxide supplement on growth performance and intestinal morphology and digestive enzyme activities in weanling pigs’, Journal of Animal Science and Technology, 56(1), p. 29. doi: 10.1186/2055-0391-56-29. Jensen, P. (1986) ‘Observations on the maternal behaviour of free-ranging domestic pigs’, Applied Animal Behaviour Science, 16(2), pp. 131–142. doi: 10.1016/0168-1591(86)90105-X. Johnson, J. S. et al. (2019) ‘Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis’, Nature Communications, 10(1), p. 5029. doi: 10.1038/s41467-019-13036-1. Jonson, A. B. et al. (2005) ‘Fimbriae, pili, flagella and bacterial virulence.’, Contributions to microbiology, 12, pp. 67–89. doi: 10.1159/000081690. Jovel, J. et al. (2016) ‘Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics’, Frontiers in Microbiology, 7. doi: 10.3389/fmicb.2016.00459. Juhász, Á. et al. (2022) ‘Alternative to ZnO to establish balanced intestinal microbiota for weaning piglets’, PLoS ONE, 17(3 March), pp. 1–18. doi: 10.1371/journal.pone.0265573. Karakuła-Juchnowicz, H. et al. (2017) ‘Intestinal Microbiota– a key to understanding the pathophysiology of anorexia nervosa?’, Psychiatria Polska, 51(5), pp. 859–870. doi: 10.12740/PP/65308. Karasova, D. et al. (2021) ‘Development of piglet gut microbiota at the time of weaning influences development of postweaning diarrhea – A field study’, Research in Veterinary Science. Elsevier Ltd, 135(August 2020), pp. 59–65. doi: 10.1016/j.rvsc.2020.12.022. Katouli, M. et al. (1999) ‘The effect of zinc oxide supplementation on the stability of the intestinal flora with special reference to composition of coliforms in weaned pigs’, Journal of Applied Microbiology, 87(4), pp. 564–573. doi: 10.1046/j.1365-2672.1999.00853.x. Katsuda, K. et al. (2006) ‘Frequency of enteropathogen detection in suckling and weaned pigs with diarrhea in Japan’, Journal of Veterinary Diagnostic Investigation, 18(4), pp. 350–354. doi: 10.1177/104063870601800405. Kim, S. jae et al. (2015) ‘Effects of a lipid-encapsulated zinc oxide dietary supplement, on growth parameters and intestinal morphology in weanling pigs artificially infected with enterotoxigenic Escherichia coli’, Journal of Animal Science and Technology, 57(1), pp. 1–5. doi: 10.1186/s40781-014-0038-9. Kim, S. W. (2013) ‘Sow Milk’, in Milk and Dairy Products in Human Nutrition. Oxford: John Wiley & Sons, pp. 614–626. doi: 10.1002/9781118534168.ch28. Klemm, P. et al. (2010) ‘Prevention of bacterial adhesion’, Applied Microbiology and Biotechnology, 88(2), pp. 451–459. doi: 10.1007/s00253-010-2805-y. Knight, R. et al. (2018) ‘Best practices for analysing microbiomes’, Nature Reviews Microbiology, 16(7), pp. 410–422. doi: 10.1038/s41579-018-0029-9. Kociova, S. et al. (2020) ‘Zinc phosphate-based nanoparticles as alternatives to zinc oxide in diet of weaned piglets’, Journal of Animal Science and Biotechnology. Journal of Animal Science and Biotechnology, 11(1), pp. 1–16. doi: 10.1186/s40104-020-00458-x. Kolde, R. (2019). ‘pheatmap: pretty heatmaps’, https://cran.r-project.org/ package=pheatmap. Kwon, C. H. et al. (2014) ‘Effects of dietary supplementation of lipid-encapsulated zinc oxide on colibacillosis, growth and intestinal morphology in weaned piglets challenged with enterotoxigenic Escherichia coli’, Animal Science Journal, 85(8), pp. 805–813. doi: 10.1111/asj.12215. Lahti, L. and Shetty, S. (2019). ‘microbiome R package’, version 1.8.0. http:// microbiome.github.io. Lallès, J. P. et al. (2007). ‘Nutritional management of gut health in pigs around weaning’. Proc Nutr Soc 66:260–268. https://doi .org/10.1017/S0029665107005484. Lallès, J. P. et al. (2004) ‘Gut function and dysfunction in young pigs: physiology’, Animal Research, 53(4), pp. 301–316. doi: 10.1051/animres:2004018. Lallès, J. P. et al. (2007) ‘Weaning - A challenge to gut physiologists’, Livestock Science, 108(1–3), pp. 82–93. doi: 10.1016/j.livsci.2007.01.091. Langmead, B. and Salzberg, S. L. (2012) ‘Fast gapped-read alignment with Bowtie 2’, Nature Methods, 9(4), pp. 357–359. doi: 10.1038/nmeth.1923. Law, K. et al. (2021) ‘Disinfection of Maternal Environments Is Associated with Piglet Microbiome Composition from Birth to Weaning’, mSphere, 6(5), pp. 1–17. doi: 10.1128/msphere.00663-21. Le Dividich, J. and Sève, B. (2000) ‘Effects of underfeeding during the weaning period on growth, metabolism, and hormonal adjustments in the piglet’, Domestic Animal Endocrinology, 19(2), pp. 63–74. doi: 10.1016/S0739-7240(00)00067-9. Lebret, B. and Čandek-Potokar, M. (2022) ‘Review: Pork quality attributes from farm to fork. Part I. Carcass and fresh meat’, Animal, 16. doi: 10.1016/j.animal.2021.100402. Lei, X. J. and Kim, I. H. (2018) ‘Low dose of coated zinc oxide is as effective as pharmacological zinc oxide in promoting growth performance, reducing fecal scores, and improving nutrient digestibility and intestinal morphology in weaned pigs’, Animal Feed Science and Technology. Elsevier, 245(June), pp. 117–125. doi: 10.1016/j.anifeedsci.2018.06.011. Lekagul, A. et al. (2019) ‘Patterns of antibiotic use in global pig production: A systematic review’, Veterinary and Animal Science, 7, p. 100058. doi: 10.1016/j.vas.2019.100058. Lenth, R. V. (2016) ‘Least-Squares Means: The R Package lsmeans’, Journal of Statistical Software. Journal of Statistical Software, 69(1), 1-33., 69(1). doi: 10.18637/jss.v069.i01. Li, D. et al. (2015). ‘MEGAHIT: an ultra-fast single- node solution for large and complex metagenomics assembly via succinct de Bruijn graph’, Bioinformatics 31:1674–1676. https://doi.org/10 .1093/bioinformatics/btv033. Li, H. et al. (2017a) ‘Effects of several in-feed antibiotic combinations on the abundance and diversity of fecal microbes in weaned pigs’, Canadian Journal of Microbiology, 63(5), pp. 402–410. doi: 10.1139/cjm-2016-0681. Li, J. et al. (2017b) ‘Early life antibiotic exposure affects pancreatic islet development and metabolic regulation’, Scientific Reports, 7(1), p. 41778. doi: 10.1038/srep41778. Li, J. et al. (2020) ‘A catalog of microbial genes from the bovine rumen unveils a specialized and diverse biomass-degrading environment’, GigaScience, 9(6). doi: 10.1093/gigascience/giaa057. Li, K. et al. (2017c) ‘Microbial composition in different gut locations of weaning piglets receiving antibiotics’, 30(1), pp. 78–84. Li, P. et al. (2017d) ‘Microbial shifts in the porcine distal gut in response to diets supplemented with Enterococcus Faecalis as alternatives to antibiotics’, Scientific Reports, 7(1), p. 41395. doi: 10.1038/srep41395. Li, S. et al. (2018) ‘Supplementation with organic acids showing different effects on growth performance, gut morphology, and microbiota of weaned pigs fed with highly or less digestible diets’, (2016), pp. 3302–3318. doi: 10.1093/jas/sky197. Li, X. et al. (2006) ‘Dietary supplementation with zinc oxide increases IGF-I and IGF-I receptor gene expression in the small intestine of weanling piglets’, Journal of Nutrition, 136(7), pp. 1786–1791. doi: 10.1093/jn/136.7.1786. Li, Y. et al. (2020) ‘Study on the Diversity and Function of Gut Microbiota in Pigs Following Long ‑ Term Antibiotic and Antibiotic ‑ Free Breeding’, Current Microbiology. Springer US, 77(12), pp. 4114–4128. doi: 10.1007/s00284-020-02240-8. Li, Y. et al. (2021) ‘Mixture of Five Fermented Herbs (Zhihuasi Tk) Alters the Intestinal Microbiota and Promotes the Growth Performance in Piglets’, Frontiers in Microbiology, 12(October), pp. 1–16. doi: 10.3389/fmicb.2021.725196. Li, Z. et al. (2019) ‘Coix seed improves growth performance and productivity in post ‑ weaning pigs by reducing gut pH and modulating gut microbiota’, AMB Express. Springer Berlin Heidelberg. doi: 10.1186/s13568-019-0828-z. Liang, J. et al. (2021) ‘Effects of Clostridium butyricum on growth performance, metabonomics and intestinal microbial differences of weaned piglets’, BMC Microbiology, 21(1), p. 85. doi: 10.1186/s12866-021-02143-z. Liu, C. et al. (2021) ‘microeco : an R package for data mining in microbial community ecology’, FEMS Microbiol Ecol. 2021 Jan 26;97(2). Available from: https://academic.oup.com/femsec/article/doi/10.1093/femsec/fiaa255/6041020 Liu, H. et al. (2019) ‘Maternal milk and fecal microbes guide the spatiotemporal development of mucosa-associated microbiota and barrier function in the porcine neonatal gut’, BMC Biology. BMC Biology, 17(1), pp. 1–15. doi: 10.1186/s12915-019-0729-2. Liu, H. et al. (2021) ‘Effects of different concentrations of coated nano zinc oxide material on fecal bacterial composition and intestinal barrier in weaned piglets’, Journal of the Science of Food and Agriculture, 101(2), pp. 735–745. doi: 10.1002/jsfa.10686. Liu, P. et al. (2014a) ‘Effect of dietary zinc oxide on jejunal morphological and immunological characteristics in weaned piglets’, Journal of Animal Science, 92(11), pp. 5009–5018. doi: 10.2527/jas.2013-6690. Liu, P. et al. (2014b) ‘Effect of dietary zinc oxide on morphological characteristics, mucin composition and gene expression in the colon of weaned piglets’, PLoS ONE, 9(3). doi: 10.1371/journal.pone.0091091. Long, L. et al. (2017) ‘Comparison of porous and nano zinc oxide for replacing high-dose dietary regular zinc oxide in weaning piglets’, PLoS ONE, 12(8), pp. 1–14. doi: 10.1371/journal.pone.0182550. Looft, T. et al. (2012) ‘In-feed antibiotic effects on the swine intestinal microbiome’, Proceedings of the National Academy of Sciences of the United States of America, 109(5), pp. 1691–1696. doi: 10.1073/pnas.1120238109. Looft, T. et al. (2014a) ‘Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations’. Nature Publishing Group, 8(8), pp. 1566–1576. doi: 10.1038/ismej.2014.12. Looft, T. et al. (2014b) ‘Carbadox has both temporary and lasting effects on the swine gut microbiota’, Frontiers in Microbiology, 5(JUN), pp. 1–1. doi: 10.3389/fmicb.2014.00276. López-Colom, P. et al. (2020) ‘Applicability of an unmedicated feeding program aimed to reduce the use of antimicrobials in nursery piglets: Impact on performance and fecal microbiota’, Animals, 10(2). doi: 10.3390/ani10020242. Lourenco, J. M. et al. (2021) ‘The Effects of Feeding Antibiotic on the Intestinal Microbiota of Weanling Pigs’, 8(March), pp. 1–12. doi: 10.3389/fvets.2021.601394. Luppi, A. (2017) ‘Swine enteric colibacillosis: Diagnosis, therapy and antimicrobial resistance’, Porcine Health Management. Porcine Health Management, 3, pp. 1–18. doi: 10.1186/s40813-017-0063-4. Ma, L. et al. (2016) ‘Iron and Zinc Exploitation during Bacterial Pathogenesis’, 7(12), pp. 1541–1554. doi: 10.1039/c5mt00170f.Iron. Mach, N. et al. (2015) ‘Early-life establishment of the swine gut microbiome and impact on host phenotypes’, Environmental Microbiology Reports, 7(3). doi: 10.1111/1758-2229.12285. Augère-Granier, M-L. (2020) ‘Briefing - The EU pig meat sector’. EPRS | European Parliamentary Research Service. Available at: https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2020)652044. Martinez Arbizu, P. (2020) ‘pairwiseAdonis: Pairwise multilevel comparison using adonis.’ R package version 0.4. Massacci, F. R. et al. (2020) ‘Host genotype and amoxicillin administration affect the incidence of diarrhoea and faecal microbiota of weaned piglets during a natural multiresistant ETEC infection’, (June 2019), pp. 60–72. doi: 10.1111/jbg.12432. McCracken, B. A. et al. (1999) ‘Weaning anorexia may contribute to local inflammation in the piglet small intestine’, Journal of Nutrition, 129(3), pp. 613–619. doi: 10.1093/jn/129.3.613. McDevitt, C. A. et al. (2011) ‘A Molecular Mechanism for Bacterial Susceptibility to Zinc’, PLoS Pathogens. Edited by J. Imlay, 7(11), p. e1002357. doi: 10.1371/journal.ppat.1002357. McMurdie, P. J. and Holmes, S. (2013) ‘Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data’, PLoS ONE, 8(4). doi: 10.1371/journal.pone.0061217. Menzel, P. et al. (2016) ‘Fast and sensitive taxonomic classification for metagenomics with Kaiju’, Nature Communications. Nature Publishing Group, 7. doi: 10.1038/ncomms11257. Merrifield, C. A. et al. (2016) ‘Neonatal environment exerts a sustained influence on the development of the intestinal microbiota and metabolic phenotype’, ISME Journal. Nature Publishing Group, 10(1), pp. 145–157. doi: 10.1038/ismej.2015.90. Meyer, T. A. et al. (2002) ‘Effects of Pharmacological Levels of Zinc as Zinc Oxide on Fecal Zinc and Mineral Excretion in Weanling Pigs11This manuscript is based on research supported in part by the Kentucky Agricultural Experiment Station and is published by the Kentucky Agricultu’, The Professional Animal Scientist, 18(2), pp. 162–168. doi: 10.15232/S1080-7446(15)31506-0. Misra, S. et al. (2020). ‘Effect of different cleaning procedures on water use and bacterial levels in weaner pig pens’, PLoS One 15:e0242495. https:// doi.org/10.1371/journal.pone.0242495. Moeser, A. J. et al. (2007) ‘Gastrointestinal dysfunction induced by early weaning is attenuated by delayed weaning and mast cell blockade in pigs’, American Journal of Physiology - Gastrointestinal and Liver Physiology, 293(2), pp. 413–421. doi: 10.1152/ajpgi.00304.2006. Mu, C. et al. (2017) ‘Differences in microbiota membership along the gastrointestinal tract of piglets and their differential alterations following an early-life antibiotic intervention’, Frontiers in Microbiology, 8(MAY), pp. 1–14. doi: 10.3389/fmicb.2017.00797. Mukherjee, A. et al. (2020) ‘Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health’, Gut Microbes. Taylor & Francis, 12(1), pp. 1–28. doi: 10.1080/19490976.2020.1802866. Mukhopadhya, A. et al. (2019) ‘A combination of yeast beta-glucan and milk hydrolysate is a suitable alternative to zinc oxide in the race to alleviate post-weaning diarrhoea in piglets’, Scientific Reports, 9(1), pp. 1–11. doi: 10.1038/s41598-018-37004-9. Neuman, H. et al. (2018) ‘Antibiotics in early life: dysbiosis and the damage done’, FEMS Microbiology Reviews. doi: 10.1093/femsre/fuy018. NRC (2012) ‘Nutrient requirements of swine.’ National Academies Press, Washington, DC, USA. O’Neill, J. (2014) ‘Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations The Review on Antimicrobial Resistance Chaired’, (December). OECD-FAO Agricultural Outlook 2022-2031 (2022). Oksanen, A. J. et al. (2020) ‘vegan: Community Ecology Package. R package version 2.5-7 https://CRAN.R-project.org/package=vegan’. Oksanen, A. J. et al. (2022) ‘vegan: Community Ecology Package. R package version 2.6-2 https://CRAN.R-project.org/package=vegan’. Ortiz Sanjuán, J. M. et al. (2022) ‘Using Shotgun Sequencing to Describe the Changes Induced by In-Feed Zinc Oxide and Apramycin in the Microbiomes of Pigs One Week Postweaning’, Microbiology Spectrum. Edited by J. M. Auchtung. American Society for Microbiology, 10(4). doi: 10.1128/spectrum.01597-22. Ou, D. et al. (2007) ‘Dietary supplementation with zinc oxide decreases expression of the stem cell factor in the small intestine of weanling pigs’, The Journal of Nutritional Biochemistry, 18(12), pp. 820–826. doi: 10.1016/j.jnutbio.2006.12.022. Papich, M. G. and Riviere, J. E. (2018). ‘Aminoglycoside antibiotics’, p 877–902. In Riviere, J. E., Papich, M. G. (ed), Veterinary pharmacology and therapeutics, 10th ed. Wiley-Blackwell, Hoboken, NJ. Parois, S. P. et al. (2020) ‘Effects of Three Distinct 2-Week Long Diet Strategies After Transport on Weaned Pigs’ Short and Long-Term Welfare Markers, Behaviors, and Microbiota’, Frontiers in Veterinary Science, 7(March), pp. 1–17. doi: 10.3389/fvets.2020.00140. Pasquet, J. et al. (2014) ‘The contribution of zinc ions to the antimicrobial activity of zinc oxide’, Colloids and Surfaces A: Physicochemical and Engineering Aspects. Elsevier B.V., 457(1), pp. 263–274. doi: 10.1016/j.colsurfa.2014.05.057. Patil, Y. et al. (2020) ‘Interactions between host and gut microbiota in domestic pigs: a review’, Gut Microbes, 11(3), pp. 310–334. doi: 10.1080/19490976.2019.1690363. Patterson, A. M. et al. (2017). ‘Human gut symbiont Roseburia hominis promotes and regulates innate immunity’, Front Immunol 8:1166. https://doi.org/10.3389/fimmu.2017.01166. Pei, X. et al. (2019) ‘Effects of dietary zinc oxide nanoparticles supplementation on growth performance, zinc status, intestinal morphology, microflora population, and immune response in weaned pigs’, Journal of the Science of Food and Agriculture, 99(3), pp. 1366–1374. doi: 10.1002/jsfa.9312. Peng, P. et al. (2019) ‘The effects of dietary supplementation with porous zinc oxide on growth performance, intestinal microbiota, morphology, and permeability in weaned piglets’, Animal Science Journal, 90(9), pp. 1220–1228. doi: 10.1111/asj.13228. Pérez-Cobas, A. E. et al. (2020) ‘Metagenomic approaches in microbial ecology: An update on whole-genome and marker gene sequencing analyses’, Microbial Genomics, 6(8), pp. 1–22. doi: 10.1099/mgen.0.000409. Petri, D. et al. (2010) ‘Microbial succession in the gastrointestinal tract (GIT) of the preweaned pig’, Livestock Science. Elsevier B.V., 133(1–3), pp. 107–109. doi: 10.1016/j.livsci.2010.06.037. Pickard, J. M. et al. (2017) ‘Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease’, Immunological Reviews, 279(1), pp. 70–89. doi: 10.1111/imr.12567.Gut. Pié, S. et al. (2004) ‘Weaning Is Associated with an Upregulation of Expression of Inflamatory Cytokines in the Intestine of Piglets’, Journal of Nutrition, 134(3), pp. 641–647. doi: 10.1093/jn/134.3.641. Pieper, R. et al. (2012) ‘Dose-dependent effects of dietary zinc oxide on bacterial communities and metabolic profiles in the ileum of weaned pigs’, Journal of Animal Physiology and Animal Nutrition, 96(5), pp. 825–833. doi: 10.1111/j.1439-0396.2011.01231.x. Pieper, R. et al. (2020) ‘Concentration and chemical form of dietary zinc shape the porcine colon microbiome, its functional capacity and antibiotic resistance gene repertoire’, ISME Journal. Springer US, 14(11), pp. 2783–2793. doi: 10.1038/s41396-020-0730-3. Plackett, B. (2020) ‘Why big pharma has abandoned antibiotics’, Nature, 586(7830), pp. S50–S52. doi: 10.1038/d41586-020-02884-3. Pluske, J. R. et al. (1997) ‘Factors influencing the structure and function of the small intestine in the weaned pig: a review’, Livestock Production Science, 51(1–3), pp. 215–236. doi: 10.1016/S0301-6226(97)00057-2. Poole, T. L. et al. (2013) ‘The effect of chlortetracycline on faecal microbial populations in growing swine’, Journal of Global Antimicrobial Resistance, 1(3), pp. 171–174. doi: 10.1016/j.jgar.2013.04.004. Poulsen, H. D. (1995) ‘Zinc oxide for weanling piglets’, Acta Agric Scand A Anim Sci. 45(3):159–67. Poulsen, A. R. et al. (2018) ‘Impact of Bacillus spp. spores and gentamicin on the gastrointestinal microbiota of suckling and newly weaned piglets’, pp. 1–22. doi: 10.1371/journal.pone.0207382. Poulsen, C. S. et al. (2021) ‘Standard Sample Storage Conditions Have an Impact on Inferred Microbiome Composition and Antimicrobial Resistance Patterns’, Microbiology Spectrum. Edited by J. Claesen, 9(2). doi: 10.1128/Spectrum.01387-21. Poulsen, H. D. and Larsen, T. (1995) ‘Zinc excretion and retention in growing pigs fed increasing levels of zinc oxide’, Livestock Production Science, 43(3), pp. 235–242. doi: 10.1016/0301-6226(95)00039-N. Prasad, A. S. et al. (1963) ‘Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypognadism.’, The Journal of laboratory and clinical medicine, 61, pp. 537–49. Available at: http://www.ncbi.nlm.nih.gov/pubmed/13985937. Quince, C. et al. (2017) ‘Shotgun metagenomics, from sampling to analysis’, Nature Biotechnology, 35(9), pp. 833–844. doi: 10.1038/nbt.3935. R Core Team (2020) ‘R: A language and environment for statistical computing. R Foundation for Statistical Computing’. Vienna, Austria. Available at: https://www.r-project.org/. R Core Team (2022) ‘R: A language and environment for statistical computing. R Foundation for Statistical Computing’. Vienna, Austria. Available at: https://www.r-project.org/. Raasch, S. et al. (2020) ‘Effectiveness of alternative measures to reduce antimicrobial usage in pig production in four European countries’, Porcine Health Management, 6(1), p. 6. doi: 10.1186/s40813-020-0145-6. Ramayo-Caldas, Y. et al. (2016) ‘Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits’, ISME Journal, 10(12). doi: 10.1038/ismej.2016.77. Rattigan, R. et al. (2020) ‘Effects of reducing dietary crude protein concentration and supplementation with laminarin or zinc oxide on the faecal scores and colonic microbiota in newly weaned pigs’, Journal of Animal Physiology and Animal Nutrition, 104(5), pp. 1471–1483. doi: 10.1111/jpn.13428. Revilla, M. et al. (2019) ‘Towards the quantitative characterisation of piglets’ robustness to weaning: A modelling approach’, Animal, 13(11), pp. 2536–2546. doi: 10.1017/S1751731119000843. Rhouma, M. et al. (2017) ‘Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies’, Acta Veterinaria Scandinavica. BioMed Central, 59(1), pp. 1–19. doi: 10.1186/s13028-017-0299-7. Rhouma, M. et al. (2021) ‘Evolution of Pig Fecal Microbiota Composition and Diversity in Response to Enterotoxigenic Escherichia coli Infection and Colistin Treatment in Weaned Piglets’. Roselli, M. et al. (2003) ‘Zinc Oxide Protects Cultured Enterocytes from the Damage Induced by Escherichia coli1’, Biochemical and Molecular Actions of Nutrients, J. Nutr. Available at: https://academic.oup.com/jn/article-abstract/133/12/4077/4687461. Rosengren, L. B. et al. (2007) ‘Associations Between Feed and Water Antimicrobial Use in Farrow-to-Finish Swine Herds and Antimicrobial Resistance of Fecal Escherichia coli from Grow-Finish Pigs’, Microbial Drug Resistance, 13(4), pp. 261–270. doi: 10.1089/mdr.2007.781. Rossolini, G. M. et al. (2017) ‘Mechanisms of Antibacterial Resistance’, in Infectious Diseases. Elsevier, pp. 1181-1196.e1. doi: 10.1016/B978-0-7020-6285-8.00138-6. Saladrigas-García, M. et al. (2021) ‘Understanding host-microbiota interactions in the commercial piglet around weaning’, Scientific Reports, 11(1), pp. 1–18. doi: 10.1038/s41598-021-02754-6. Sales, J. (2013) ‘Effects of pharmacological concentrations of dietary zinc oxide on growth of post-weaning pigs: A meta-analysis’, Biological Trace Element Research, 152(3), pp. 343–349. doi: 10.1007/s12011-013-9638-3. Sargeant, H. R. et al. (2010) ‘The metabolic impact of zinc oxide on porcine intestinal cells and enterotoxigenic Escherichia coli K88’, Livestock Science. doi: 10.1016/j.livsci.2010.06.021. Sargeant, H. R. et al. (2011) ‘Inflammatory response of porcine epithelial IPEC J2 cells to enterotoxigenic E. coli infection is modulated by zinc supplementation’, Molecular Immunology. Elsevier Ltd, 48(15–16), pp. 2113–2121. doi: 10.1016/j.molimm.2011.07.002. Sarmikasoglou, E. and Faciola, A. P. (2022) ‘Ruminal bacteria lipopolysaccharides: an immunological and microbial outlook’, Journal of Animal Science and Biotechnology. Journal of Animal Science and Biotechnology, 13(1), pp. 1–7. doi: 10.1186/s40104-022-00692-5. Sarrazin, S. et al. (2019) ‘Quantitative and qualitative analysis of antimicrobial usage patterns in 180 selected farrow-to-finish pig farms from nine European countries based on single batch and purchase data’, Journal of Antimicrobial Chemotherapy, 74(3), pp. 807–816. doi: 10.1093/jac/dky503. Sawai, J. et al. (1996) ‘Detection of active oxygen generated from ceramic powders having antibacterial activity’, J Chem Eng Japan 29:627–633. https://doi .org/10.1252/jcej.29.627. Schmieder, R. and Edwards, R. (2011) ‘Quality control and preprocessing of metagenomic datasets’, Bioinformatics 27:863–864. https://doi.org/10 .1093/bioinformatics/btr026. Schokker, D. et al. (2014) ‘Early-life environmental variation affects intestinal microbiota and immune development in new-born piglets’, PLoS ONE, 9(6). doi: 10.1371/journal.pone.0100040. Scholten, M. C. T. et al. (2013) ‘Livestock Farming with Care: towards sustainable production of animal-source food’, NJAS: Wageningen Journal of Life Sciences, 66(1), pp. 3–5. doi: 10.1016/j.njas.2013.05.009. SCVMP. Standing Committee on Veterinary Medicinal Products (2017) ‘Summary report of the 19 June 2017 of the Standing Committee on Veterinary Medicinal Products’. Segata, N. et al. (2011) ‘Metagenomic biomarker discovery and explanation’, Genome Biology. BioMed Central Ltd, 12(6), p. R60. doi: 10.1186/gb-2011-12-6-r60. Sengupta, S. et al. (2013) ‘The multifaceted roles of antibiotics and antibiotic resistance in nature’, Frontiers in Microbiology, 4. doi: 10.3389/fmicb.2013.00047. Sheldon, J. R. and Skaar, E. P. (2019) ‘Metals as phagocyte antimicrobial effectors’, pp. 1–9. doi: 10.1016/j.coi.2019.04.002.Metals. Shen, J. et al. (2014) ‘Coated zinc oxide improves intestinal immunity function and regulates microbiota composition in weaned piglets’, British Journal of Nutrition, 111(12), pp. 2123–2134. doi: 10.1017/S0007114514000300. Silva, G. G. Z. et al. (2016) ‘SUPER-FOCUS: A tool for agile functional analysis of shotgun metagenomic data’, Bioinformatics, 32(3), pp. 354–361. doi: 10.1093/bioinformatics/btv584. Sjölund, M. et al. (2016) ‘Quantitative and qualitative antimicrobial usage patterns in farrow-to-finish pig herds in Belgium, France, Germany and Sweden’, Preventive Veterinary Medicine, 130, pp. 41–50. doi: 10.1016/j.prevetmed.2016.06.003. Sjölund, M. et al. (2014) ‘Financial impact on pig production: III. Gastrointestinal disorders’:, in Proceedings of the 6th European Symposium of Porcine Health Management. Sorrento, Italy., p. 189. Available at: https://eaphm.org/sites/default/files/2018-08/Sorrento_Italy_7-9_May_2014_PROCEEDINGS.pdf. Sloup, V. et al. (2017) ‘Zinc in the Animal Organism: A Review’, Sci Agric Bohem, 48(1):13–21. Söderberg, T.A. et al. (1990) ‘Antibacterial effect of zinc oxide in vitro’, Scand J Plast Reconstr Surg Hand Surg, 24(3):193–7. doi: 10.3109/02844319009041278. Soler, C. et al. (2018) ‘Digestive microbiota is different in pigs receiving antimicrobials or a feed additive during the nursery period’, PLoS ONE, 13(5), pp. 1–22. doi: 10.1371/journal.pone.0197353. Sommer, F. et al. (2017) ‘The resilience of the intestinal microbiota influences health and disease’, Nature Reviews Microbiology. Nature Publishing Group, 15(10), pp. 630–638. doi: 10.1038/nrmicro.2017.58. Spees, A. M. et al. (2013) ‘Streptomycin-induced inflammation enhances Escherichia coli gut colonization through nitrate respiration’, mBio, 4(4), pp. 1–10. doi: 10.1128/mBio.00430-13. Standing Committee on veterinary medicinal products. (2017) COMMISSION IMPLEMENTING DECISION of 26.6.2017 concerning the marketing authorisations for veterinary medicinal products containing “zinc oxide” to be administered orally to food producing species. Available at: https://ec.europa.eu/health/documents/community-register/2017/20170626136754/dec_136754_en.pdf. Stanton, T. B. and Humphrey, S. B. (2011) ‘Persistence of antibiotic resistance: Evaluation of a probiotic approach using antibiotic-sensitive Megasphaera elsdenii strains to prevent colonization of swine by antibiotic-resistant strains’, Applied and Environmental Microbiology, 77(20), pp. 7158–7166. doi: 10.1128/AEM.00647-11. Stanton, T. B. et al. (2011) ‘Chlortetracycline-resistant intestinal bacteria in organically raised and feral swine’, Applied and Environmental Microbiology, 77(20), pp. 7167–7170. doi: 10.1128/AEM.00688-11. Starke, I. C. et al. (2014) ‘The impact of high dietary zinc oxide on the development of the intestinal microbiota in weaned piglets’, FEMS Microbiology Ecology, 87(2), pp. 416–427. doi: 10.1111/1574-6941.12233. Sun, J. et al. (2014) ‘Development of aminoglycoside and Î2-lactamase resistance among intestinal microbiota of swine treated with lincomycin, chlortetracycline, and amoxicillin’, Frontiers in Microbiology, 5. doi: 10.3389/fmicb.2014.00580. Sun, T. et al. (2022) ‘Effect of dietary Bacillus coagulans on the performance and intestinal microbiota of weaned piglets’, Animal The international journal of animal biosciences. The Author(s), 16. doi: 10.1016/j.animal.2022.100561. Sun, Y. et al. (2022) ‘Coated Zinc Oxide Improves Growth Performance of Weaned Piglets via Gut Microbiota’, Frontiers in Nutrition, 9(February), pp. 1–12. doi: 10.3389/fnut.2022.819722. Suttle, N. (2010) Mineral nutrition of livestock. Edited by Cabi. Cambridge, MA. Tang, Q. et al. (2022) ‘Dietary Hermetia illucens Larvae Meal Improves Growth Performance and Intestinal Barrier Function of Weaned Pigs Under the Environment of Enterotoxigenic Escherichia coli K88’, Frontiers in Nutrition, 8(January), pp. 1–18. doi: 10.3389/fnut.2021.812011. Tong, X. et al. (2020) ‘Reestablishment of social hierarchies in weaned pigs after mixing’, Animals, 10(1), pp. 1–12. doi: 10.3390/ani10010036. Tremaroli, V. and Bäckhed, F. (2012) ‘Functional interactions between the gut microbiota and host metabolism’, Nature, 489(7415), pp. 242–249. doi: 10.1038/nature11552. Tsukahara, T. et al. (2006) ‘Stimulation of butyrate production through the metabolic interaction among lactic acid bacteria, Lactobacillus acidophilus, and lactic acid-utilizing bacteria, Megasphaera elsdenii, in porcine cecal digesta’, Animal Science Journal, 77(4), pp. 454–461. doi: 10.1111/j.1740-0929.2006.00372.x. Tunsagool, P. et al. (2021) ‘Metagenomics of Antimicrobial and Heavy Metal Resistance in the Cecal Microbiome of Fattening Pigs Raised without Antibiotics’, Applied and Environmental Microbiology, 87(8), pp. 1–21. doi: 10.1128/AEM.02684-20. Unno, T. et al. (2015) ‘Effects of Antibiotic Growth Promoter and Characterization of Ecological Succession in Swine Gut Microbiota’, Journal of Microbiology and Biotechnology, 25(4), pp. 431–438. doi: 10.4014/jmb.1408.08063. Vahjen, W. et al. (2015) ‘High dietary zinc supplementation increases the occurrence of tetracycline and sulfonamide resistance genes in the intestine of weaned pigs’, Gut Pathogens, 7(1). doi: 10.1186/s13099-015-0071-3. Vahjen, W. et al. (2010) ‘Bar-Coded Pyrosequencing of 16S rRNA Gene Amplicons Reveals Changes in Ileal Porcine Bacterial Communities Due to High Dietary Zinc Intake’, Applied and Environmental Microbiology, 76(19), pp. 6689–6691. doi: 10.1128/AEM.03075-09. Vahjen, W. et al. (2011) ‘Increased dietary zinc oxide changes the bacterial core and enterobacterial composition in the ileum of piglets’, Journal of Animal Science, 89(8), pp. 2430–2439. doi: 10.2527/jas.2010-3270. van de Wouw, M. et al. (2017) ‘Microbiota-gut-brain axis: Modulator of host metabolism and appetite’, Journal of Nutrition, 147(5), pp. 727–745. doi: 10.3945/jn.116.240481. Venardou, B. et al. (2022) ‘Potential of a fucoidan-rich Ascophyllum nodosum extract to reduce Salmonella shedding and improve gastrointestinal health in weaned pigs naturally infected with Salmonella’, Journal of Animal Science and Biotechnology, 13(1), pp. 1–16. doi: 10.1186/s40104-022-00685-4. von Bülow, V. et al. (2007) ‘Zinc-Dependent Suppression of TNF-α Production Is Mediated by Protein Kinase A-Induced Inhibition of Raf-1, IκB Kinase β, and NF-κB’, The Journal of Immunology, 179(6), pp. 4180–4186. doi: 10.4049/jimmunol.179.6.4180. Walsh, S. et al. (2000) ‘Modulation of tight junction structure and function by cytokines’, Advanced Drug Delivery Reviews, 41(3), pp. 303–313. doi: 10.1016/S0169-409X(00)00048-X. Wang, H. H. and Schaffner, D. W. (2011). ‘Antibiotic resistance: how much do we know and where do we go from here?’, Appl Environ Microbiol 77: 7093–7095. https://doi.org/10.1128/AEM.06565-11. Wang, H. et al. (2021) ‘Evaluation of the combined effects of different dose levels of Zinc oxide with probiotics complex supplementation on the growth performance, nutrient digestibility, faecal microbiota, noxious gas emissions and faecal score of weaning pigs’, Journal of Animal Physiology and Animal Nutrition, 105(2), pp. 286–293. doi: 10.1111/jpn.13493. Wang, W. et al. (2019a) ‘Effect of zinc oxide sources and dosages on gut microbiota and integrity of weaned piglets’, Journal of Animal Physiology and Animal Nutrition, 103(1), pp. 231–241. doi: 10.1111/jpn.12999. Wang, X. et al. (2019b) ‘Longitudinal investigation of the swine gut microbiome from birth to market reveals stage and growth performance associated bacteria’, Microbiome. Microbiome, 7(1), pp. 1–18. doi: 10.1186/s40168-019-0721-7. Wang, Y. Z. et al. (2004) ‘Developmental Gene Expression of Antimicrobial Peptide PR-39 and Effect of Zinc Oxide on Gene Regulation of PR-39 in Piglets’, Asian-Australasian Journal of Animal Sciences, 17(12), pp. 1635–1640. doi: 10.5713/ajas.2004.1635. Warnes, G. R. et al. (2020). ‘gplots: various R programming tools for plotting data’, https://cran.r-project.org/package=gplots. Wątły, J. et al. (2016) ‘Zinc Homeostasis at the Bacteria/Host Interface—From Coordination Chemistry to Nutritional Immunity’, Chemistry - A European Journal, 22(45), pp. 15992–16010. doi: 10.1002/chem.201602376. Wei, X. et al. (2020) ‘ZnO modulates swine gut microbiota and improves growth performance of nursery pigs when combined with peptide cocktail’, Microorganisms, 8(2). doi: 10.3390/microorganisms8020146. Wei, X. et al. (2021) ‘Weaning Induced Gut Dysfunction and Nutritional Interventions in Nursery Pigs: A Partial Review’, Animals, 11(5), p. 1279. doi: 10.3390/ani11051279. Wensel, C. R. et al. (2022) ‘Next-generation sequencing: insights to advance clinical investigations of the microbiome’, Journal of Clinical Investigation, 132(7). doi: 10.1172/JCI154944. Wexler, H. M. (2007) ‘Bacteroides: The good, the bad, and the nitty-gritty’, Clinical Microbiology Reviews, 20(4), pp. 593–621. doi: 10.1128/CMR.00008-07. Wickham, H. (2016) ‘ggplot2: elegant graphics for data analysis’, Springer- Verlag New York. https://ggplot2.tidyverse.org. Wijtten, P. J. A. et al. (2011) ‘Intestinal barrier function and absorption in pigs after weaning: A review’, British Journal of Nutrition, 105(7), pp. 967–981. doi: 10.1017/S0007114510005660. Winter, S. E. et al. (2013) ‘Host-derived nitrate boosts growth of E. coli in the inflamed gut’, Science, 339(6120), pp. 708–711. doi: 10.1126/science.1232467. Wood, D. E.et al. (2019) ‘Improved metagenomic analysis with Kraken 2’, Genome Biol 20:257. https://doi.org/10.1186/s13059-019-1891-0. Woolhouse, M. et al. (2015) ‘Antimicrobial resistance in humans, livestock and the wider environment’, Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1670), p. 20140083. doi: 10.1098/rstb.2014.0083. World Health Organization (WHO) (2021) ‘Critically important antimicrobials for human medicine 6th revision’, Geneva: Licence: CC BY-NC-SA 3. 0 IGO. Accessed on July 21, 2021. Available at: https://www.who.int/publications/i/item/9789241515528. Wu, C. et al. (2013) ‘Zinc as an agent for the prevention of biofilm formation by pathogenic bacteria’, Journal of Applied Microbiology, 115(1), pp. 30–40. doi: 10.1111/jam.12197. Wu, W. K. et al. (2019) ‘Optimization of fecal sample processing for microbiome study — The journey from bathroom to bench’, Journal of the Formosan Medical Association, 118(2), pp. 545–555. doi: 10.1016/j.jfma.2018.02.005. Xia, T. et al. (2017) ‘Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets’, Oncotarget, 8(39). doi: 10.18632/oncotarget.17612. Xiao, L. et al. (2016) ‘A reference gene catalogue of the pig gut microbiome’, Nature Microbiology, 1. doi: 10.1038/nmicrobiol.2016.161. Xu, T. et al. (2022) ‘Coated tannin supplementation improves growth performance, nutrients digestibility, and intestinal function in weaned piglets’, Journal of Animal Science, 100(5), pp. 1–12. doi: 10.1093/jas/skac088. Xu, X. et al. (2020) ‘Effects of Cortex Phellodendri extract on post-weaning piglets diarrhoea’, pp. 901–909. doi: 10.1002/vms3.304. Yan, H. et al. (2020) ‘Antibiotic affects the gut microbiota composition and expression of genes related to lipid metabolism and myofiber types in skeletal muscle of piglets’, BMC Vet Res, 16(1):1–12. Yang, Y. et al. (2020) ‘Wild-type cutoff for apramycin against Escherichia coli’, BMC Vet Res 16:309. https://doi.org/10.1186/s12917-020-02522-0. Yang, B. et al. (2022) ‘The Responses of Lactobacillus reuteri LR1 or Antibiotic on Intestinal Barrier Function and Microbiota in the Cecum of Pigs’, Frontiers in Microbiology, 13. doi: 10.3389/fmicb.2022.877297. Yang, Q. et al. (2019) ‘Longitudinal development of the gut microbiota in healthy and diarrheic piglets induced by age-related dietary changes’, MicrobiologyOpen, 8(12), pp. 1–17. doi: 10.1002/mbo3.923. Yazdankhah, S. et al. (2014) ‘Zinc and copper in animal feed – development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin’, Microbial Ecology in Health & Disease, 25. doi: 10.3402/mehd.v25.25862. Ye, Q. et al. (2020) ‘Iron and zinc ions, potent weapons against multidrug-resistant bacteria’, Applied Microbiology and Biotechnology, 104(12), pp. 5213–5227. doi: 10.1007/s00253-020-10600-4. Yin, J. et al. (2009) ‘Dietary supplementation with zinc oxide stimulates ghrelin secretion from the stomach of young pigs’, Journal of Nutritional Biochemistry. Elsevier Inc., 20(10), pp. 783–790. doi: 10.1016/j.jnutbio.2008.07.007. Yoon, S. Y. et al. (2020) ‘Effects of zinc oxide and arginine on the intestinal microbiota and immune status of weaned pigs subjected to high ambient temperature’, Animals, 10(9), pp. 1–15. doi: 10.3390/ani10091537. Yu, H. T. et al. (2017a) ‘Dietary supplemented antimicrobial peptide microcin J25 improves the growth performance, apparent total tract digestibility, fecal microbiota, and intestinal barrier function of weaned pigs’, Journal of Animal Science, 95(11), pp. 5064–5076. doi: 10.2527/jas2017.1494. Yu, M. et al. (2018) ‘Marked Response in Microbial Community and Metabolism in the Ileum and Cecum of Suckling Piglets After Early Antibiotics Exposure’, Frontiers in Microbiology, 9. doi: 10.3389/fmicb.2018.01166. Yu, T. et al. (2017b) ‘Dietary high zinc oxide modulates the microbiome of ileum and colon in weaned piglets’, Frontiers in Microbiology, 8(MAY), pp. 1–12. doi: 10.3389/fmicb.2017.00825. Yu, T. et al. (2017c) ‘Low-Molecular-Weight Chitosan Supplementation Increases the Population of Prevotella in the Cecal Contents of Weanling Pigs’, Frontiers in Microbiology, 8. doi: 10.3389/fmicb.2017.02182. Zeineldin, M. et al. (2019a) ‘Antimicrobial effects on swine gastrointestinal microbiota and their accompanying antibiotic resistome’, Frontiers in Microbiology, 10(MAY). doi: 10.3389/fmicb.2019.01035. Zeineldin, M. M. et al. (2019b) ‘Negligible impact of perinatal tulathromycin metaphylaxis on the developmental dynamics of fecal microbiota and their accompanying antimicrobial resistome in piglets’, Frontiers in Microbiology, 10(APR), pp. 1–12. doi: 10.3389/fmicb.2019.00726. Zeng, M. Y., Inohara, N. and Nuñez, G. (2017) ‘Mechanisms of inflammation-driven bacterial dysbiosis in the gut’, Mucosal Immunology, 10(1), pp. 18–26. doi: 10.1038/mi.2016.75. Zhang, B. and Guo, Y. (2009) ‘Supplemental zinc reduced intestinal permeability by enhancing occludin and zonula occludens protein-1 (ZO-1) expression in weaning piglets’, British Journal of Nutrition, 102(5), pp. 687–693. doi: 10.1017/S0007114509289033. Zhang, D. et al. (2016) ‘Changes in the diversity and composition of gut microbiota of weaned piglets after oral administration of Lactobacillus or an antibiotic’, Applied Microbiology and Biotechnology, 100(23), pp. 10081–10093. doi: 10.1007/s00253-016-7845-5. Zhang, G. et al. (2022) ‘Effects of Tetrabasic Zinc Chloride on Growth Performance, Nutrient Digestibility and Fecal Microbial Community in Weaned Piglets’, Frontiers in Veterinary Science, 9(June), pp. 1–10. doi: 10.3389/fvets.2022.905242. Zheng, L. et al. (2021) ‘Intestinal Health of Pigs Upon Weaning: Challenges and Nutritional Intervention’, Frontiers in Veterinary Science, 8(February), pp. 1–18. doi: 10.3389/fvets.2021.628258. Zhu, C. et al. (2017) ‘Dietary Zinc Oxide Modulates Antioxidant Capacity, Small Intestine Development, and Jejunal Gene Expression in Weaned Piglets’, Biological Trace Element Research, 175(2). doi: 10.1007/s12011-016-0767-3. Zhu, Q. et al. (2022) ‘Probiotics or synbiotics addition to sows’ diets alters colonic microbiome composition and metabolome profiles of offspring pigs’, (August), pp. 1–22. doi: 10.3389/fmicb.2022.934890. Zwirzitz, B. et al. (2019) ‘Microbiota of the Gut-Lymph Node Axis: Depletion of Mucosa-Associated Segmented Filamentous Bacteria and Enrichment of Methanobrevibacter by Colistin Sulfate and Linco-Spectin in Pigs’, Frontiers in Microbiology, 10. doi: 10.3389/fmicb.2019.00599.