BiomineralizaciónCuando los organismos crean minerales

  1. Coronado, Ismael 1
  1. 1 Universidad de León
    info

    Universidad de León

    León, España

    ROR https://ror.org/02tzt0b78

Aldizkaria:
AmbioCiencias: revista de divulgación

ISSN: 1988-3021

Argitalpen urtea: 2022

Zenbakien izenburua: Ambiociencias nº 20 (diciembre 2022)

Zenbakia: 20

Orrialdeak: 77-100

Mota: Artikulua

DOI: 10.18002/AMBIOC.I20.7490 DIALNET GOOGLE SCHOLAR lock_openSarbide irekia editor

Beste argitalpen batzuk: AmbioCiencias: revista de divulgación

Laburpena

Los sistemas bióticos y abióticos se entrelazan, en su máxima expresión, durante la formación de biominerales. Estos son minerales producidos por los organismos, ayudados de macromoléculas orgánicas, los cuales forman esqueletos y estructuras esqueléticas (como dientes, huesos, conchas, espículas…) de una manera precisa, que involucra una maquinaria celular sincronizada y que tienen una función biológica muy específica. El estudio de la biomineralización es multidisciplinar y tiene un enfoque diverso: ingeniería, biología, química, paleontología. Este artículo resume qué es la  biomineralización, cuándo aparece en la historia de la Tierra, tipos de biomineralización, el papel de la matriz orgánica en la biomineralización, los controles (genéticos y ambientales) de la biomineralización, así como el papel de los estudios sobre biomineralización empleando fósiles.

Erreferentzia bibliografikoak

  • Addadi, L., Aizenberg, J., Albeck, S., Berman, A., Leiserowitz, L. y Weiner, S. 1994. Controlled occlusion of proteins: a tool for modulating the properties of skeletal elements. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 248(1):185–198.
  • Bashkin, V. N. 2003. Modern Biogeochemistry. Dordrecht : Kluwer, New York, Estados Unidos.
  • Berman, A. 2008. Biomineralization of calcium carbonate. The interplay with biosubstrates. En Biomineralization: from nature to application, Volume 4 (Eds. Sigel, A., Sigel, H. y Sigel R. K.), pp. 167–205, John Wiley y Sons, Ltd., Londres, Reino Unido.
  • Checa, A. G., Macías-Sánchez, E., Harper, E. M. y Cartwright, J. H. E. 2016. Organic membranes determine the pattern of the columnar prismatic layer of mollusk shells. Proceedings of the Royal Society B: Biological Sciences. 283:1830.
  • Coronado, I., Fine, M., Bosellini, F. R. y Stolarski, J. 2019. Impact of ocean acidification on crystallographic vital effect of the coral skeleton. Nature Communications. 10(1):1–9.
  • Coronado, I., Pérez-Huerta, A. y Rodríguez, S. 2015. Crystallographic orientations of structural elements in skeletons of Syringoporicae (tabulate corals, Carboniferous): Implications for biomineralization processes in Palaeozoic corals. Palaeontology. 58(1):111–132.
  • Coronado, I. y Stolarski, J. 2019. Anisotropic lattice distortions caused by photosymbiosis in scleractinian corals. En Biomin XV, 15th International Symposium on Biomineralization (Schmahl, W. y Griesshaber, E.), pp. 61. Ludwig Maximilians University, Munich, Alemania.
  • Cusack, M., Dauphin, Y., Cuif, J. P., Salome, M., Freer, A. y Yin, H. 2008. Micro-XANES mapping of sulphur and its association with magnesium and phosphorus in the shell of the brachiopod, Terebratulina retusa. Chemical Geology. 253(3–4):172–179.
  • Dalbeck, P., England, J., Cusack, M., Lee, M. R. y Fallick, A. E. 2006. Crystallography and chemistry of the calcium carbonate polymorph switch in M. edulis shells. European Journal of Mineralogy. 18(5):601–609.
  • Dorozhkin, S. V. 2011. Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter. 1(2):121–164.
  • Falini, G., Albeck, S., Weiner, S. y Addadi, L. 1996. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science. 271(5245):67–69.
  • Falini, G., Sartor, G., Fabbri, D., Vergni, P., Fermani, S. et al. 2011. The interstitial crystal-nucleating sheet in molluscan Haliotis rufescens shell: A bio-polymeric composite. Journal of Structural Biology. 173(1):128–137.
  • Fortey, R. A., Jackson, J. y Strugnell, J. 2004. Phylogenetic fuses and evolutionary explosions’: conflicting evidence and critical tests. Systematics Association. 66:41–65.
  • Hoffmann, T. D., Reeksting, B. J. y Gebhard, S. 2021. Bacteria-induced mineral precipitation: a mechanistic review. Microbiology. 167(4):001049.
  • Horodyski, R. J., y Mankiewicz, C. 1990. Possible Late Proterozoic skeletal algae from the Pahrump-Group, Kingston Range, Southeastern California. American Journal of Science. 290A:149–169.
  • Isa, Y. y Okazaki, M. 1987. Some observations on the Ca2+-binding phospholipid from scleractinian coral skeletons. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 87(3):507–512.
  • Keller, N. B., Demina, L. L. y Os’kina, N. S. 2007. Variations in the chemical composition of the skeletons of non-zooxanthellate scleractinian (Anthozoa: Scleractinia) corals. Geochemistry International. 45(8):832–839.
  • Kontoyannis, C. G. y Vagenas, N. V. 2000. Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst. 125(2):251–255.
  • Kostrova, S. S., Meyer, H., Chapligin, B., Tarasov, P. E. y Bezrukova, E. V. 2014. The last glacial maximum and late glacial environmental and climate dynamics in the Baikal region inferred from an oxygen isotope record of lacustrine diatom silica. Quaternary International. 348:25–36.
  • Lowenstam, H. y Weiner, S. 1989. On biomineralization. pp. 324, Oxford University Press, New York, Estados Unidos.
  • Mann, S. 2001. Biomineralization: Principles and concepts in bioinorganic materials chemistry. pp. 198, Oxford University Press. New York, Estados Unidos.
  • Marin, F., Le Roy, N., Marie, B., Ramos-Silva, P., Bundeleva, I. et al. 2014. Metazoan calcium carbonate biomineralizations: macroevolutionary trends – challenges for the coming decade. Bulletin de La Societe Geologique de France. 185(4):217–232.
  • Mateos-Carralafuente, J. R., Coronado, I., Cózar, P. y Rodríguez, S. 2022. Gigantoproductid shell spiral and microstructure of tertiary layer: evaluation as taxonomical characters. Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 1–17. doi.org/10.1017/S1755691022000196.
  • Meibom, A., Stage, M., Wooden, J., Constantz, B. R., Dunbar, R. B. et al. 2003. Monthly Strontium/Calcium oscillations in symbiotic coral aragonite: Biological effects limiting the precision of the paleotemperature proxy. Geophysical Research Letters. 30(7):1418.
  • Müller, W. E. G. 2011. Molecular biomineralization: aquatic organisms forming extraordinary materials. pp. 404, Springer, Heidelberg, Alemania.
  • Pannier, S., y Legeai-Mallet, L. 2008. Hereditary multiple exostoses and enchondromatosis. Best Practice & Research Clinical Rheumatology. 22(1):45–54.
  • Pérez-Huerta, A. y Andrus C. F. T. 2010. Vital effects in the context of biomineralization. En Workshop on Biominerals and Biomineralization Processes, Vol. 7, Seminarios de la Sociedad Española de Mineralogía. (EL. Fernández-Díaz, L. y Astilleros, J. M.), pp. 35–45. Sociedad Española de Mineralogía, Madrid, España.
  • Pérez-Huerta, A., Coronado, I. y Hegna, T. A. 2018. Understanding biomineralization in the fossil record. Earth-Science Reviews. 179:95–122.
  • Porter, S. M. y Knoll, A. H. 2000. Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology. 26(3):360–385.
  • Reimer, T., Dempster, T., Warren-Myers, F., Jensen, A. J. y Swearer, S. 2016. High prevalence of vaterite in sagittal otoliths causes hearing impairment in farmed fish. Scientific Reports. 6(1):1–8.
  • Różycka, M., Coronado, I., Brach, K., Olesiak-Bańska, J., Samoć, M. et al. (2019). Lattice shrinkage by incorporation of recombinant starmaker-like protein within bioinspired calcium carbonate crystals. Chemistry - A European Journal. 25(55):12740–12750
  • Samata, T. 1990. Ca-binding glycoproteins in molluscan shells with different types of ultrastructure. Veliger. 33(2):190–201.
  • Secor, D. H., Dean, J. M. y Laban, E. H. 1992. Otolith removal and preparation for microstructural examination. En Otolith Microstructure Examination and Analysis (Stevenson, D. K. y Campana, S. E.). Canadian Special Publication of Fisheries and Aquatic Sciences, 117:19–57.
  • Shore, A. J. 2021. Affinity of Ediacaran skeletal fauna and their environmental context. Tesis Doctoral, The University of Edinburgh, Reino Unido.
  • Stolarski, J. 2000. Origin and phylogeny of Guyniidae (Scleractinia) in the light of microstructural data. Lethaia. 33(1):13–38.
  • Stolarski, J. Coronado, I., Lampart-Kaluzniacka, M., Mazur, M. y Meibom, A. 2017. Calcium carbonate polymorphism in salmonid fish otoliths: Crystallography and biogeochemistry. En The 14th International Symposium on Biomineralization (BIOMIN XIV) from molecular and nano-structural analyses to environmental science, Tsukuba, Japón.
  • Tester, C. C. y Joester, D. 2013. Precipitation in liposomes as a model for intracellular biomineralization. Methods in Enzymology. 532:257–276.
  • Urey, H. C., Lowenstam, H. A. Epstein, S. y McKinney, C. R. 1951. Measurement of paleotemperatures and temperatures and the Southeastern United States. Bulletin of the Geological Society of America. 62:399–416.
  • Veis, A. 2008. Crystals and Life: an introduction. En Biomineralization (Eds. Sigel, A., Sigel, H. y Sigel, R. K.), pp. 1–35. John Wiley & Sons, Ltd. Londres, Reino Unido.
  • Viedma, C. y Soutullo, B. 2018. Minerales, vida y evolución. Enseñanza de Las Ciencias de La Tierra. 26(3):274–280.
  • Weiner, S. y Dove, P. M. 2003. An overview of biomineralization processes and the problem of the vital effect. Reviews in Mineralogy and Geochemistry. 54(1):1–29.
  • Weiner, S. y Traub, W. 1984. Macromolecules in mollusc shells and their functions in biomineralization. Phillosophical Transactions B. 304:421–438.
  • Wesson, J. A. y Ward, M. D. 2007. Pathological biomineralization of kidney stones. Elements.3(6):415–421.