Técnicas de clasificación supervisadas para la detección de anomalías en el control de procesos industriales
- Álvaro Michelena Grandío 1
- Francisco Zayas-Gato 1
- Esteban Jove Pérez 1
- José-Luis Casteleiro-Roca 1
- Héctor Quintián Pardo 1
- Natalia Prieto Fernández 1
- Héctor Alaiz Moretón 2
- José Luis Calvo Rolle 1
-
1
Universidade da Coruña
info
-
2
Universidad de León
info
- Carlos Balaguer Bernaldo de Quirós (ed. lit.)
- José Manuel Andújar Márquez (ed. lit.)
- Ramón Costa Castelló (ed. lit.)
- C. Ocampo-Martínez (coord.)
- Juan Jesús Fernández Lozano (ed. lit.)
- Matilde Santos Peñas (ed. lit.)
- José Simo (ed. lit.)
- Montserrat Gil Martínez (ed. lit.)
- José Luis Calvo Rolle (ed. lit.)
- Raúl Marín (ed. lit.)
- Eduardo Rocón de Lima (ed. lit.)
- Elisabet Estévez Estévez (ed. lit.)
- Pedro Jesús Cabrera Santana (ed. lit.)
- David Muñoz de la Peña Sequedo (ed. lit.)
- José Luis Guzmán Sánchez (ed. lit.)
- José Luis Pitarch Pérez (ed. lit.)
- Óscar Reinoso García (ed. lit.)
- Óscar Déniz Suárez (ed. lit.)
- Emilio Jiménez Macías (ed. lit.)
- Vanesa Loureiro-Vázquez (ed. lit.)
Publisher: Servizo de Publicacións ; Universidade da Coruña
Year of publication: 2022
Pages: 224-232
Congress: Jornadas de Automática (43. 2022. Logroño)
Type: Conference paper
Abstract
Nowadays, detecting anomalies in industrial processes is key to optimizing them and generating greater efficiency in the production process, bringing more significant benefits to companies. Therefore, in this paper, five supervised classification techniques are implemented to detect anomalies in industrial systems. These techniques have been trained and validated using a dataset that included labeled normal and anomalous operation data from a liquid level control plant. Finally, the results obtained were analyzed and compared to obtain the model with the best performance.