Aminas biógenas en alimentosmétodos moleculares para la detección e identificación de bacterias productoras

  1. del Río, Beatriz 1
  2. Redruello, Begoña 1
  3. Fernández, María 1
  4. Ladero, Victor 1
  5. Álvarez, Miguel A. 1
  1. 1 Instituto de productos lácteos de Asturias. Consejo Superior de Investigaciones Científicas
Revista:
Arbor: Ciencia, pensamiento y cultura

ISSN: 0210-1963

Año de publicación: 2020

Volumen: 196

Número: 795

Tipo: Artículo

DOI: 10.3989/ARBOR.2020.795N1009 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Arbor: Ciencia, pensamiento y cultura

Resumen

Las aminas biógenas son compuestos nitrogenados de pequeño tamaño con actividad biológica que se forman por la descarboxilación enzimática de ciertos aminoácidos. Las aminas biógenas se encuentran presentes en todos los seres vivos, en los que participan en procesos biológicas de gran importancia. Sin em­bargo, debido al metabolismo de algunos microorganismos, estos compuestos se pueden acumular en alimentos en concentraciones elevadas, constituyendo un riesgo para la salud de los consumido­res. Para que las aminas biógenas alcancen estas concentraciones elevadas en los alimentos se requiere, como condición indispensa­ble, la presencia de microrganismos productores, por lo que se han desarrollado diferentes métodos para detectar la presencia de los mismos. Entre estos métodos, aquellos basados en técnicas inde­pendientes de cultivo, como la PCR, presentan ventajas como su gran especificidad, el hecho de ser rápidos y de fácil realización, y que en muchos casos ni siquiera es necesario un tratamiento previo de la muestra, lo que facilita su incorporación a las plantas de elabo­ración. En este trabajo se describen algunos de los métodos dispo­nibles en la actualidad para la detección de microorganismos pro­ductores de aminas biógenas, así como sus posibles aplicaciones.

Información de financiación

Este trabajo ha sido realizado gracias a la financiaci?n recibida del Ministerio de Econom?a y Competitividad a trav?s de la Agencia Estatal de Investigaci?n (AGL201678708-R; AEI/FEDER, UE), CSIC (CSIC201770E086 and CSIC201870I091) y el Principado de Asturias (IDI/2018/0 00114, cofinanciado con fondos FEDER).

Referencias bibliográficas

  • Alegría, A., Szczesny, P., Mayo, B., Bardowski, J. y Kowalczyk, M. (2012). Biodiversity in Oscypek, a traditional Polish cheese, determined by culture-dependent and -independent approaches. Applied and Environmental Microbiology, 78 (6), pp. 1890-1898. https://doi.org/10.1128/ AEM.06081-11
  • Álvarez, M. A. y Moreno-Arribas, M. V. (2014). The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends in Food Science & Technology, 39 (2), pp. 146-155.
  • Bardocz, S. (1999). Role of biogenic amines-summing up or what is it we do not know? En Bardocz, S., Koninkx, J., Grillo, M. y White, A. (eds.). Biogenically active amines in food (vol. III), pp. 1-4. Disponible en https://op.europa.eu/en/ publication-detail/-/publication/ed5a2fd4-32fd-48f7-8175-18a3d28e3b5e/ language-en/format-PDF/source-search
  • Bermúdez, R., Lorenzo, J. M., Fonseca, S., Franco, I. y Carballo, J. (2012). Strains of Staphylococcus and Bacillus isolated from traditional sausages as producers of biogenic amines. Frontiers in Microbiology, 3, 151.
  • Bjornsdottir-Butler, K., Jones, J. L., Benner, R. y Burkhardt, W. (2011a). Development of a real-time PCR assay with an internal amplification control for detection of Gram-negative histamine-producing bacteria in fish. Food Microbiology, 28 (3), pp. 356-363.
  • Bjornsdottir-Butler, K., Jones, J. L., Benner, R. A. y Burkhardt, W. (2011b). Quantification of total and specific gram-negative histamine-producing bacteria species in fish using an MPN real-time PCR method. Food Microbiology, 28 (7), pp. 1284-1292.
  • Bjornsdottir-Butler, K., Leon, M. S. y Benner, R. A. Jr. (2016). Draft genome sequences of histamine-producing Morganella psychrotolerans strains. Genome Announcements, 4 (5).
  • Blackwell, B. (1963). Hypertensive crisis due to monoamine-oxidase inhibitors. Lancet, 282 (7313), pp. 849- 851.
  • Bodmer, S., Imark, C. y Kneubuhl, M. (1999). Biogenic amines in foods: histamine and food processing. Inflammatory Research, 48 (6), pp. 296-300.
  • Bover-Cid, S. y Holzapfel, W. H. (1999). Improved screening procedure for biogenic amine production by lactic acid bacteria. International Journal of Food Microbiology, 53 (1), pp. 33- 41.
  • Bover-Cid, S., Hugas, M., Izquierdo-Pulido, M. y Vidal-Carou, M C. (2001). Amino acid-decarboxylase activity of bacteria isolated from fermented pork sausages. International Journal of Food Microbiology, 66 (3), pp. 185-189.
  • Bover-Cid, S., Schoppen, S., Izquierdo- Pulido, M. y Vidal-Carou, M. C. (1999). Relationship between biogenic amine contents and the size of dry fermented sausages. Meat Science, 51 (4), pp. 305- 311.
  • Cachaldora, A., Fonseca, S., Franco, I. y Carballo, J. (2013). Technological and safety characteristics of Staphylococcaceae isolated from Spanish traditional dry-cured sausages. Food Microbiology, 33 (1), pp. 61-68.
  • Calles-Enríquez, M., Eriksen, B. H., Andersen, P. S., Rattray, F. P., Johansen, A. H., Fernández, M., Ladero, V. y Álvarez, M. A. (2010). Sequencing and transcriptional analysis of the Streptococcus thermophilus histamine biosynthesis gene cluster: factors that affect differential hdcA expression. Applied and Environmental Microbiology, 76 (18), pp. 6231-6238.
  • Cocolin, L., Díez, A., Urso, R., Rantsiou, K., Comi, G., Bermaier, I. y Beimfohr, C. (2007). Optimization of conditions for profiling bacterial populations in food by culture-independent methods. International Journal of Food Microbiology, 120 (1-2), pp. 100-109.
  • Costantini, A., Cersosimo, M., Prete, V. del y García-Moruno, E. (2006). Production of biogenic amines by lactic acid bacteria: Screening by PCR, thin-layer chromatography, and high-performance liquid chromatography of strains isolated from wine and must. Journal of Food Protection, 69 (2), pp. 391- 396.
  • Coton, E. y Coton, M. (2005). Multiplex PCR for colony direct detection of Gram-positive histamine- and tyramine-producing bacteria. Journal of Microbiological Methods, 63 (3), pp. 296-304.
  • Coton, M., Romano, A., Spano, G., Ziegler, K., Vetrana, C., Desmarais, C., Lonvaud- Funel, A., Lucas, P. y Coton, E. (2010). Occurrence of biogenic amine-forming lactic acid bacteria in wine and cider. Food Microbiology, 27 (8), pp. 1078-1085.
  • Díaz, M., Ladero, V., Río, B. del, Redruello, B., Fernández, M., Martín, M. C. y Álvarez, M. A. (2016). Biofilm-forming capacity in biogenic amine-producing bacteria isolated from dairy products. Frontiers in Microbiology, 7, 591.
  • Díaz, M., Ladero, V., Redruello, B., Sánchez- Llana, E., del Río, B., Fernández, M., Martín, M. C. y Álvarez, M. A. (2016). A PCR-DGGE method for the identification of histamine-producing bacteria in cheese. Food Control, 63, pp. 216-223.
  • Díaz, M., Río, B. del, Ladero, V., Redruello, B., Fernández, M., Martín, M. C. y Álvarez, M. A. (2015). Isolation and typification of histamine-producing Lactobacillus vaginalis strains from cheese. International Journal of Food Microbiology, 215, pp. 117-123.
  • Díaz, M., Río, B. del, Sánchez-Llana, E., Ladero, V., Redruello, B., Fernández, M., Martín, M. C. y Álvarez, M. A. (2016). Histamine-producing Lactobacillus parabuchneri strains isolated from grated cheese can form biofilms on stainless steel. Food Microbiology, 59, 85-91.
  • Díaz, M., Río, B. del, Sánchez-Llana, E., Ladero, V., Redruello, B., Fernández, M. […] y Álvarez, M. A. (2018). Lactobacillus parabuchneri produces histamine in refrigetared cheese at a temperature-dependent rate. International Journal of Food Science and Technology, 53 (10), pp. 2342-2348.
  • EFSA Panel on BiologicalHazards (BIOHAZ) (2011). Scientific Opinion on risk based control of biogenic amine formation in fermented foods. EFSA Journal, 9 (10), pp. 2393-2486.
  • Fernández-No, I. C., Bohme, K., Calo-Mata, P. y Barros-Velázquez, J. (2011). Characterisation of histamine-producing bacteria from farmed blackspot seabream (Pagellus bogaraveo) and turbot (Psetta maxima). International Journal of Food Microbiology, 151 (2), pp. 182-189.
  • Fernández, M., Flórez, A. B., Linares, D. M., Mayo, B. y Álvarez, M. A. (2006). Early PCR detection of tyramine-producing bacteria during cheese production. Journal of Dairy Research, 73 (3), pp. 318-321.
  • Fernández, M., Linares, D. M. y Álvarez, M. A. (2004). Sequencing of the tyrosine decarboxylase cluster of Lactococcus lactis IPLA 655 and the development of a PCR method for detecting tyrosine decarboxylating lactic acid bacteria. Journal of Food Protection, 67 (11), pp. 2521-2529.
  • Fernández, M., Linares, D. M., Río, B. del, Ladero, V. y Álvarez, M. A. (2007). HPLC quantification of biogenic amines in cheeses: correlation with PCR-detection of tyramine-producing microorganisms. Journal of Dairy Research, 74 (3), pp. 276-282.
  • Fernández, M., Río, B. del, Linares, D. M., Martín, M. C. y Álvarez, M. A. (2006). Real-time polymerase chain reaction for quantitative detection of histamine-producing bacteria: Use in cheese production. Journal of Dairy Science, 89 (10), pp. 3763-3769.
  • Flórez, A. B. y Mayo, B. (2006). PCR-DGGE as a tool for characterizing dominant microbial populations in the Spanish blue-veined Cabrales cheese. International Dairy Journal, 16 (10), pp. 1205-1210.
  • Garai, G., Dueñas, M. T., Irastorza, A., Maztin-Álvarez, P .J. y Moreno-Arribas, M. V. (2006). Biogenic amines in natural ciders. Journal of Food Protection, 69 (12), 3006-3012.
  • Gardini, F., Ozogul, Y., Suzzi, G., Tabanelli, G. y Ozogul, F. (2016). Technological factors affecting biogenic amine content in foods: a review. Frontiers in Microbiology, 7, 1218.
  • Geornaras, I., Dykes, G. A. y von Holy, A. (1995). Biogenic amine formation by poultry-associated spoilage and pathogenic bacteria. Letters in Applied Microbiology, 21 (3), pp. 164-166.
  • Guidi, L. R. y Gloria, M. B. (2012). Bioactive amines in soy sauce: validation of method, occurrence and potential health effects. Food Chemistry, 133 (2), pp. 323-328.
  • Joosten, H. M. y Northolt, M. D. (1989). Detection, growth, and amine-producing capacity of lactobacilli in cheese. Applied and Environmental Microbiology, 55 (9), pp. 2356-2359.
  • Jorgensen, L. V., Huss, H. H. y Dalgaard, P. (2000). The effect of biogenic amine production by single bacterial cultures and metabiosis on cold-smoked salmon. Journal of Applied Microbiology, 89 (6), pp. 920-934.
  • Kalac, P. y Krausova, P. (2005). A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods. Food Chemistry, 90 (1-2), pp. 219-230.
  • Kim, S. H., Field, K. G., Morrissey, M. T., Price, R. J., Wei, C. I. y An, H. (2001). Source and identification of histamine-producing bacteria from fresh and temperature-abused albacore. Journal of Food Protection, 64, 7, 1035-1044.
  • Ladero, V., Calles-Enríquez, M., Fernández, M. y Álvarez, M. A. (2010). Toxicological effects of dietary biogenic amines. Current Nutrition and Food Science, 6 (2), pp. 145-156.
  • Ladero, V., Cañedo, E., Pérez, M., Cruz Martín, M., Fernández, M. y Álvarez, M. A. (2012). Multiplex qPCR for the detection and quantification of putrescine-producing lactic acid bacteria in dairy products. Food Control, 27 (2), pp. 307-313.
  • Ladero, V., Coton, M., Fernández, M., Buron, N., Martín, M. C., Guichard, H., Coton, E. y Álvarez, M. A. (2011). Biogenic amines content in Spanish and French natural ciders: Application of qPCR for quantitative detection of biogenic amine-producers. Food Microbiology, 28, (3), pp. 554-561.
  • Ladero, V., Fernández, M. y Álvarez, M. A. (2009). Effect of post-ripening processing on the histamine and histamine-producing bacteria contents of different cheeses. International Dairy Journal, 19 (12), pp. 759-762.
  • Ladero, V., Fernández, M., Calles-Enríquez, M., Sánchez-Llana, E., Cañedo, E.Martín, M. C. y Álvarez, M. A. (2012). Is the production of the biogenic amines tyramine and putrescine a species-level trait in enterococci? Food Microbiology, 30 (1), pp. 132-138.
  • Ladero, V., Fernández, M., Cuesta, I. y Álvarez, M. A. (2010). Quantitative detection and identification of tyramine-producing enterococci and lactobacilli in cheese by multiplex qPCR. Food Microbiology, 27 (7), pp. 933-939.
  • Ladero, V., Linares, D. M., Fernández, M. y Álvarez, M. A. (2008). Real time quantitative PCR detection of histamine-producing lactic acid bacteria in cheese: Relation with histamine content. Food Research International, 41 (10), pp. 1015-1019.
  • Ladero, V., Linares, D. M., Río, B. del, Fernández, M., Martín, M. C. y Álvarez, M. A. (2013). Draft genome sequence of the tyramine producer Enterococcus durans strain IPLA 655. Genome Announcements, 1 (3), e00265-13.
  • Ladero, V., Martín, M., Redruello, B., Mayo, B., Flórez, A., Fernández, M. y Álvarez, M. A. (2015). Genetic and functional analysis of biogenic amine production capacity among starter and non-starter lactic acid bacteria isolated from artisanal cheeses. European Food Research and Technology, 241 (3), pp. 377-383.
  • Ladero, V., Martínez, N., Martín, M. C., Fernández, M. y Álvarez, M. A. (2010). qPCR for quantitative detection of tyramine-producing bacteria in dairy products. Food Research International, 43 (1), pp. 289-295.
  • Ladero, V., Rattray, F. P., Mayo, B., Martín, M. C., Fernández, M. y Álvarez, M. A. (2011). Sequencing and transcriptional analysis of the biosynthesis gene cluster of putrescine-producing Lactococcus lactis. Applied and Environmental Microbiology, 77 (18), pp. 6409-6418.
  • Ladero, V., Río, B. del, Linares, D. M., Fernández, M., Mayo, B., Martín, M. C. y Álvarez, M. A. (2014). Genome sequence analysis of the biogenic amine-producing strain Lactococcus lactis subsp. cremoris cect 8666 (formerly GE2- 14). Genome Announcements, 2 (5), e01088-14.
  • Landete, J. M., Rivas, B. de las, Marcobal, A. y Muñoz, R. (2007). Molecular methods for the detection of biogenic amine-producing bacteria on foods. International Journal of Food Microbiology, 117 (3), pp. 258-269.
  • Landete, J. M., Rivas, B. de las, Marcobal, A. y Muñoz, R. (2011). PCR methods for the detection of biogenic amine-producing bacteria on wine. Annals of Microbiology, 61 (1), pp. 159-166.
  • Latorre-Moratalla, M. L., Bosch-Fuste, J., Lavizzari, T., Bover-Cid, S., Veciana- Nogués, M. T., y Vidal-Carou, M. C. (2009). Validation of an ultra high pressure liquid chromatographic method for the determination of biologically active amines in food. Journal of Chromatography A, 1216 (45), pp. 7715- 7720.
  • Latorre-Moratalla, M. L., Bover-Cid, S., Veciana-Nogués, T. y Vidal-Carou, M. C. (2009). Thin-layer chromatography for the identification and semi-quantification of biogenic amines produced by bacteria. Journal of Chromatography A, 1216 (18), pp. 4128-4132.
  • Le Jeune, C., Lonvaud-Funel, A., ten Brink, B., Hofstra, H. y van der Vossen, J. M. (1995). Development of a detection system for histidine decarboxylating lactic acid bacteria based on DNA probes, PCR and activity test. Journal of Appllied Bacteriology, 78 (3), pp. 316-326.
  • Linares, D. M., Cruz Martín, M., Ladero, V., Álvarez, M. A. y Fernández, M. (2011). Biogenic amines in dairy products. Critical Reviews in Food Science and Nutrition, 51, (7), pp. 691-703.
  • Linares, D. M., Fernández, M., Río, B. del, Ladero, V., Martín, M. C. y Álvarez, M. A. (2012). The tyrosyl-tRNA synthetase like gene located in the tyramine biosynthesis cluster of Enterococcus durans is transcriptionally regulated by tyrosine concentration and extracellular pH. BMC Microbiology, 12, (23).
  • Linares, D. M., Río, B. del, Redruello, B., Ladero, V., Martín, M. C., Fernández, M., Ruas-Madiedo, P. y Álvarez, M. A. (2016). Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food Chemistry, 197, pp. 658- 663.
  • Lucas, P. M., Claisse, O. y Lonvaud-Funel, A. (2008). High frequency of histamine-producing bacteria in the enological environment and instability of the histidine decarboxylase production phenotype. Applied and Environmental Microbiology, 74 (3), pp. 811-817.
  • Lucas, P. y Lonvaud-Funel, A. (2002). Purification and partial gene sequence of the tyrosine decarboxylase of Lactobacillus brevis IOEB 9809. FEMS Microbiology Letters, 211 (1), pp. 85-89.
  • Maijala, R. L. (1993). Formation of histamine and tyramine by some lactic acid bacteria in MRS-broth and modified decarboxylation agar. Letters in Applied Microbiology, 17 (1), pp. 40-43.
  • Marcobal, A., Rivas, B. de las, Moreno- Arribas, M. V. y Muñoz, R. (2005). Multiplex PCR method for the simultaneous detection of histamine-, tyramine-, and putrescine-producing lactic acid bacteria in foods. Journal of Food Protection, 68 (4), pp. 874-878.
  • Marcobal, A., Rivas, B. de las, Moreno-Arribas, M. V. y Muñoz, R. (2006). Evidence for horizontal gene transfer as origin of putrescine production in Oenococcus oeni RM83. Applied and Environmental Microbiology, 72 (12), pp. 7954-7958.
  • Martín, B., Garriga, M., Hugas, M., Bover- Cid, S., Veciana-Nogués, M. T. y Aymerich, T. (2006). Molecular, technological and safety characterization of Gram-positive catalase-positive cocci from slightly fermented sausages. International Journal of Food Microbiology, 107, (2), pp. 148-158.
  • Martín, M. C., Fernández, M., Linares, D. M. y Álvarez, M. A. (2005). Sequencing, characterization and transcriptional analysis of the histidine decarboxylase operon of Lactobacillus buchneri. Microbiology-Sgm, 151, pp. 1219-1228.
  • Martínez, N., Martín, M. C., Herrero, A., Fernández, M., Álvarez, M. A. y Ladero, V. (2011). qPCR as a powerful tool for microbial food spoilage quantification: Significance for food quality. Trends in Food Science & Technology, 22 (7), pp. 367-376.
  • Masson, F., Johansson, G. y Montel, M. C. (1999). Tyramine production by a strain of Carnobacterium divergens inoculated in meat-fat mixture. Meat Science, 52, (1), pp. 65-69.
  • Mayo, B., Rachid, C. T., Alegría, A., Leite, A. M., Peixoto, R. S. y Delgado, S. (2014). Impact of next generation sequencing techniques in food microbiology. Current Genomics, 15 (4), 293-309.
  • Mayr, C. M. y Schieberle, P. (2012). Development of stable isotope dilution assays for the simultaneous quantitation of biogenic amines and polyamines in foods by LC-MS/MS. Journal of Agricultural and Food Chemistry, 60 (12), pp. 3026-3032.
  • Mercogliano, R., Felice, A. de, Chirollo, C. y Cortesi, M. L. (2010). Production of vasoactive amines during the ripening of Pecorino Carmasciano cheese. Veterinarian Research Communnications, 34, 175-178.
  • Mitar, I., Ljubenkov, I., Rohtek, N., Prkic, A., Andelic, I. y Vuletic, N. (2018). The content of biogenic amines in croatian wines of different geographical origins. Molecules, 23 (10), 2570.
  • Nannelli, F., Claisse, O., Gindreau, E., Revel, G. de, Lonvaud-Funel, A. y Lucas, P. M. (2008). Determination of lactic acid bacteria producing biogenic amines in wine by quantitative PCR methods. Letters in Applied Microbiology, 47 (6), pp. 594-599.
  • Novella-Rodríguez, S., Veciana-Nogués, M. T., Izquierdo-Pulido, M. y Vidal-Carou, M. C. (2003). Distribution of biogenic amines and polyamines in cheese. Journal of Food Science, 68 (3), pp. 750-755.
  • Novella-Rodríguez, S. N., Veciana-Nogués, M. T., Roig-Sagués, A. X., Trujillo-Mesa, A .J. y Vidal-Carou, M. C. (2004). Evaluation of biogenic amines and microbial counts throughout the ripening of goat cheeses from pasteurized and raw milk. Journal of Dairy Research, 71 (2), pp. 245-252.
  • Novella-Rodríguez, S., Veciana-Nogués, M. T. y Vidal-Carou, M. C. (2000). Biogenic amines and polyamines in milks and cheeses by ion-pair high performance liquid chromatography. Journal of Agricultural and Food Chemistry, 48 (11), pp. 5117-5123.
  • O’Sullivan, D. J., Fallico, V., O’Sullivan, O., McSweeney, P. L., Sheehan, J. J., Cotter, P. D. y Giblin, L. (2015). High-throughput DNA sequencing to survey bacterial histidine and tyrosine decarboxylases in raw milk cheeses. BMC Microbiol, 15 (1), 266.
  • Ozdestan, O. y Uren, A. (2010). Biogenic amine content of kefir: A fermented dairy product. European Food Research and Technology, 231 (1), pp. 101-107.
  • Pérez, M., Calles-Enríquez, M., Nes, I., Martín, M. C., Fernández, M., Ladero, V. y Álvarez, M. A. (2015). Tyramine biosynthesis is transcriptionally induced at low pH and improves the fitness of Enterococcus faecalis in acidic environments. Applied Microbiology and Biotechnology, 99 (8), pp. 3547-3558.
  • Pérez, M., Ladero, V., Río, B. del, Redruello, B., Jong, A. de, Kuipers, O., Kok, J., Martín, M. C., Fernández, M. y Álvarez, M. A. (2017). The relationship among tyrosine decarboxylase and agmatine deiminase pathways in Enterococcus faecalis. Frontiers in Microbiology, 8, 2107.
  • Pinho, O., Pintado, A. I. E., Gomes, A. M. P., Pintado, M. M. E., Malcata, F. X. y Ferreira, I. M. (2004). Interrelationships among microbiological, physicochemical, and biochemical properties of Terrincho cheese, with emphasis on biogenic amines. Journal of Food Protection, 67 (12), pp. 2779-2785.
  • Podeur, G., Dalgaard, P., Leroi, F., Prevost, H., Emborg, J., Martinussen, J., Hansen, L. H. y Pilet, M. F. (2015). Development of a real-time PCR method coupled with a selective pre-enrichment step for quantification of Morganella morganii and Morganella psychrotolerans in fish products. International Journal of Food Microbiology, 203, pp. 55-62.
  • Redruello, B., Ladero, V., Cuesta, I., Álvarez- Buylla, J. R., Martín, M. C., Fernández, M. y Álvarez, M. A. (2013). A fast, reliable, ultra high performance liquid chromatography method for the simultaneous determination of amino acids, biogenic amines and ammonium ions in cheese, using diethyl ethoxymethylenemalonate as a derivatising agent. Food Chemistry, 139 (1-4), pp. 1029- 1035.
  • Redruello, B., Ladero, V., Río, B. del, Fernández, M., Martín, M. C. y Álvarez, M. A. (2016). Data on recovery of 21 amino acids, 9 biogenic amines and ammonium ions after spiking four different beers with five concentrations of these analytes. Data in Brief, 9, pp. 398-400.
  • Río, B. del, Binetti, A. G., Martín, M. C., Fernández, M., Magadan, A. H. y Álvarez, M. A. (2007). Multiplex PCR for the detection and identification of dairy bacteriophages in milk. Food Microbiology, 24 (1), pp. 75-81.
  • Río, B. del, Redruello, B., Linares, D. M., Ladero, V., Fernández, M., Martín, M. C., Ruas-Madiedo, P. y Álvarez, M. A. (2017). The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture. Food Chemistry, 218, pp. 249-255.
  • Río, B. del, Redruello, B., Linares, D. M., Ladero, V., Ruas-Madiedo, P., Fernández, M., Martín, M. C. y Álvarez, M. A. (2019). The biogenic amines putrescine and cadaverine show in vitro cytotoxicity at concentrations that can be found in foods. Scientific Reports, 9 (1), e120.
  • Río, B. del, Redruello, B., Martín, M. C., Fernández, M., Jong, A. de, Kuipers, O. P., Ladero, V. y Álvarez, M. A. (2016). Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine. Genomics Data, 7, pp. 112-114.
  • Rivas, B. de las, Marcobal, A., Carrascosa, A. V. y Muñoz, R. (2006). PCR detection of foodborne bacteria producing the biogenic amines histamine, tyramine, putrescine, and cadaverine. Journal of Food Protection, 69 (10), pp. 2509-2514.
  • Rivas, B. de las, Marcobal, A. y Muñoz, R. (2005). Improved multiplex-PCR method for the simultaneous detection of food bacteria producing biogenic amines. FEMS Microbiology Letters, 244 (2), pp. 367-372.
  • Romano, A., Ladero, V., Álvarez, M. A. y Lucas, P. M. (2014). Putrescine production via the ornithine decarboxylation pathway improves the acid stress survival of Lactobacillus brevis and is part of a horizontally transferred acid resistance locus. International Journal of Food Microbiology, 175, pp. 14-19.
  • Romano, A., Trip, H., Lolkema, J. S. y Lucas, P. M. (2013). Three-component lysine/ ornithine decarboxylation system in Lactobacillus saerimneri 30a. Journal of Bacteriology, 195 (6), pp. 1249-1254.
  • Shukla, S., Park, H. K., Kim, J. K. y Kim, M. (2010). Determination of biogenic amines in Korean traditional fermented soybean paste (Doenjang). Food and Chemical Toxicology, 48 (5), pp. 1191-1195.
  • Silla Santos, M. H. (1996). Biogenic amines: their importance in foods. International Journal of Food Microbiology, 29 (2-3), pp. 213-231.
  • Smidt, O. de (2016). The use of PCR-DGGE to determine bacterial fingerprints for poultry and red meat abattoir effluent. Letters in Applied Microbiology, 62 (1), pp. 1-8.
  • Taylor, S. L. y World Health Organization (1985). Histamine poisoning associated with fish, cheese and other foods. Report VPH/FOS/85.1. WorldHealth Organization. [En línea]. Disponible en https:// apps.who.int/iris/handle/10665/66407
  • ten Brink, B., Damink, C., Joosten, H. M. y Tveld, J. H. (1990). Occurrence and formation of biologically-active amines in foods. International Journal of Food Microbiology, 11 (1), pp. 73-84.
  • Torriani, S., Gatto, V., Sembeni, S., Tofalo, R., Suzzi, G., Belletti, N., Gardini, F. y Bover-Cid, S. (2008). Rapid detection and quantification of tyrosine decarboxylase gene (tdc) and its expression in gram-positive bacteria associated with fermented foods using PCR-based methods. Journal of Food Protection, 71, (1), pp. 93-101.
  • Trip, H., Mulder, N. L., Rattray, F. P. y Lolkema, J. S. (2011). HdcB, a novel enzyme catalysing maturation of pyruvoyl-dependent histidine decarboxylase. Molecular Microbiology, 79 (4), pp. 861-871.
  • Walsh, A. M., Crispie, F., Claesson, M .J. y Cotter, P. D. (2017). Translating omics to food microbiology. Annual Reviews in Food Science and Technology, 8, pp. 113-134.
  • Wuthrich, D., Berthoud, H., Wechsler, D., Eugster, E., Irmler, S. y Bruggmann, R. (2017). The histidine decarboxylase gene cluster of Lactobacillus parabuchneri was gained by horizontal gene transfer and is mobile within the species. Frontiers in Microbiology, 8, 218.
  • Yongsawatdigul, J., Choi, Y. J. y Udomporn, S. (2004). Biogenic amines formation in fish sauce prepared from fresh and temperature- abused Indianan chovy (Stolepho rusindicus). Journal of Food Science, 69 (4), pp. 312-319.
  • Scombrotoxin (histamine) formation. [En línea]. Disponible en https://www.fda. gov/media/80248/download