Estado del arte de la educación en automática

  1. David Muñoz de la Peña 1
  2. Manuel Domínguez 2
  3. Fabio Gomez-Estern 3
  4. Óscar Reinoso 4
  5. Fernando Torres 5
  6. Sebastián Dormido 6
  1. 1 Universidad de Sevilla, España
  2. 2 Universidad de León, España
  3. 3 Universidad Loyola Andalucía, España
  4. 4 Universidad Miguel Hernández de Elche, España
  5. 5 Universidad de Alicante, España
  6. 6 UNED, España
Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Año de publicación: 2022

Volumen: 19

Número: 2

Páginas: 117-131

Tipo: Artículo

Otras publicaciones en: Revista iberoamericana de automática e informática industrial ( RIAI )

Resumen

Control education is a mature area in which many professors and researchers have worked hard to face the challenge of providing a versatile education, with a strong scientific base. All this without losing sight of the needs of the industry; adapting the contents, methodologies and tools to the continuous social and technological changes of our time. This article presents a reflection on the role of automation in today’s society, a review of the traditional objectives of control education through seminal works in the area and finally a review of the main current trends.

Referencias bibliográficas

  • Akçayır, G., Akçayır, M., 2018. The flipped classroom: A review of its advantages and challenges. Computers & Education 126, 334-345. https://doi.org/10.1016/j.compedu.2018.07.021
  • Aljaloud, A., Gromik, N., Billingsley, W., Kwan, P., 01 2015. Research trends in student response systems: A literature review. International Journal of Learning Technology 10, 313. https://doi.org/10.1504/IJLT.2015.074073
  • Antsaklis, P., Basar, T., DeCarlo, R., McClamroch, N., Spong, M., Yurkovich, S., 1998. NSF/CSS workshop on new directions in control engineering education. National Science Foundation and IEEE Control Systems Society, Tech. rep.
  • Aracil, J., 2010. Fundamentos, método e historia de la Ingeniería: una mirada al mundo de los Ingenieros. Síntesis.
  • Arevalo, V., Vicente-del Rey, J., Garcia-Morales, I., Rivas-Blanco, I., 2020. Minivideos tutorials to reinforce the learning of basic concepts for an automatic control course. Revista Iberoamericana de Automática e Informática Industrial17 (2), 107-115. https://doi.org/10.4995/riai.2020.12156
  • Åström, K. J., 1999. Automatic control-the hidden technology. In: Advances in Control. Springer, pp. 1-28. https://doi.org/10.1007/978-1-4471-0853-5_1
  • Åström, K. J., Kumar, P. R., 2014. Control: A perspective. Automatica 50 (1), 3-43. https://doi.org/10.1016/j.automatica.2013.10.012
  • Becerra-Alonso, D., Lopez-Cobo, I., Gómez-Rey, P., Fernández-Navarro, F., Barbera, E., 2020. Eduzinc: A tool for the creation and assessment of student learning activities in complex open, online, and flexible learning environments. Distance Education 41 (1), 86-105. https://doi.org/10.1080/01587919.2020.1724769
  • Bers, M. U., Portsmore, M., 2005. Teaching partnerships: Early childhood and engineering students teaching math and science through robotics. Journal of Science Education and Technology 14 (1), 59-73. https://doi.org/10.1007/s10956-005-2734-1
  • Bristol, E., 1986. An industrial point of view on control teaching and theory. IEEE Control Systems Magazine 6 (1), 24-27. https://doi.org/10.1109/MCS.1986.1105041
  • Candelas, F., Torres, F., Ortiz, F., Gil, P., Pomares, J., Puente, S., 2003. Teaching and learning robotics with internet teleoperation. In: Proc. Second International Conference on Multimedia and Information & Communication Technologies in Education. Vol. 3. pp. 1827-1831.
  • Chandrasekaran, S., Stojcevski, A., Littlefair, G., Joordens, M., 2013. Projectoriented design-based learning: aligning students' views with industry needs. International Journal of Engineering Education 29 (5), 1109-1118.
  • Chen, J., Kolmos, A., Du, X., 2021. Forms of implementation and challenges of PBL in engineering education: a review of literature. European Journal of Engineering Education 46 (1), 90-115. https://doi.org/10.1080/03043797.2020.1718615
  • Chung, C. C., Cartwright, C., Cole, M., 2014. Assessing the impact of an autonomous robotics competition for STEM education. Journal of STEM Education: Innovations and Research 15 (2).
  • del Pozo, A., Escaño, J., Muñoz de la Peña, D., Gómez-Estern, F., 2013. 3D simulator of industrial systems for control education with automated assessment. IFAC Proceedings Volumes 46 (17), 321-326. https://doi.org/10.3182/20130828-3-UK-2039.00070
  • Dormido, S., 2004. Control learning: Present and future. Annual Reviews in control 28 (1), 115-136. https://doi.org/10.1016/j.arcontrol.2003.12.002
  • Díaz, J. M., Costa-Castelló, R., Dormido, S., 2021. Un enfoque interactivo para el análisis y diseño de sistemas de control utilizando el método del lugar de las raíces. Revista Iberoamericana de Automática e Informática industrial 18 (2), 172-188. https://doi.org/10.4995/riai.2020.13811
  • Farias, G., Muñoz de la Peña, D., Gómez-Estern, F., De la Torre, L., Sánchez, C., Dormido, S., 2016. Adding automatic evaluation to interactive virtual labs. Interactive Learning Environments 24 (7), 1456-1476. https://doi.org/10.1080/10494820.2015.1022559
  • Faure, E., Herrera, F., Kaddoura, A., Lopes, H., Petrovski, A. V., Rahnema, M., Ward, F., 1972. Learning to be: The world of education today and tomorrow. Unesco.
  • Foulis, C. Y., Papadopoulou, S., 2018. A portable low-cost arduino-based laboratory kit for control education. In: 2018 UKACC 12th International Conference on Control (CONTROL). IEEE, pp. 435-435. https://doi.org/10.1109/CONTROL.2018.8516817
  • Frank, M., Lavy, I., Elata, D., 2003. Implementing the project-based learning approach in an academic engineering course. International Journal of Technology and Design Education 13 (3), 273-288. https://doi.org/10.1023/A:1026192113732
  • Froyd, J. E., Wankat, P. C., Smith, K. A., 2012. Five major shifts in 100 years of engineering education. Proceedings of the IEEE 100 (Special Centennial Issue), 1344-1360. https://doi.org/10.1109/JPROC.2012.2190167
  • Göl, Ö., Nafalski, A., 2007. Collaborative learning in engineering education. Global J. of Engng. Educ 11 (2).
  • Harrington, C., Zakrajsek, T. D., 2017. Dynamic lecturing: Research-based strategies to enhance lecture effectiveness. Stylus Publishing, LLC.
  • Hartikainen, S., Rintala, H., Pylväs, L., Nokelainen, P., 2019. The concept of active learning and the measurement of learning outcomes: A review of research in engineering higher education. Education Sciences 9 (4). https://doi.org/10.3390/educsci9040276
  • Heradio, R., de la Torre, L., Dormido, S., 2016a. Virtual and remote labs in control education: A survey. Annual Reviews in Control 42, 1-10. https://doi.org/10.1016/j.arcontrol.2016.08.001
  • Heradio, R., De La Torre, L., Galan, D., Cabrerizo, F. J., Herrera-Viedma, E., Dormido, S., 2016b. Virtual and remote labs in education: A bibliometric analysis. Computers & Education 98, 14-38. https://doi.org/10.1016/j.compedu.2016.03.010
  • Huang, R., Ritzhaupt, A. D., Sommer, M., Zhu, J., Stephen, A., Valle, N., Hampton, J., Li, J., 2020. The impact of gamification in educational settings on student learning outcomes: A meta-analysis. Educational Technology Research and Development 68 (4), 1875-1901. https://doi.org/10.1007/s11423-020-09807-z
  • Keady, G., Fitz-Gerald, G., Gamble, G., Sangwin, C., 2012. Computer-aided assessment in mathematical sciences. In: Proceedings of The Australian Conference on Science and Mathematics Education.
  • Kolberg, E., Orlev, N., 2001. Robotics learning as a tool for integrating science technology curriculum in K-12 schools. In: 31st Annual Frontiers in Education Conference. Impact on Engineering and Science Education. Conference Proceedings (Cat. No. 01CH37193). Vol. 1. IEEE, pp. T2E-12.
  • Lamnabhi-Lagarrigue, F., Annaswamy, A., Engell, S., Isaksson, A., Khargonekar, P., Murray, R. M., Nijmeijer, H., Samad, T., Tilbury, D., Van den Hof, P., 2017. Systems & control for the future of humanity, research agenda: Current and future roles, impact and grand challenges. Annual Reviews in Control 43, 1-64. https://doi.org/10.1016/j.arcontrol.2017.04.001
  • Lehmann, M., Christensen, P., Du, X., Thrane, M., 2008. Problem-oriented and project-based learning (POPBL) as an innovative learning strategy for sustainable development in engineering education. European Journal of Engineering Education 33 (3), 283-295. https://doi.org/10.1080/03043790802088566
  • Lerma, E., Costa-Castelló, R., Griñó, R., Sanchis, C., 2021. Herramientas para la docencia de control digital en grados de ingeniería. Revista Iberoamericana de Automática e Informática industrial 18 (2), 189-199. https://doi.org/10.4995/riai.2020.13756
  • Membrillo-Hernández, J., de Jesús Ramírez-Cadena, M., Ramírez-Medrano, A., García-Castelán, R. M., García-García, R., 2021. Implementation of the challenge-based learning approach in academic engineering programs. International Journal on Interactive Design and Manufacturing 15 (2), 287-298. https://doi.org/10.1007/s12008-021-00755-3
  • Muñoz de la Peña, D., Gómez-Estern, F., Dormido, S., 2012. A new internet tool for automatic evaluation in control systems and programming. Computers & Education 59 (2), 535-550. https://doi.org/10.1016/j.compedu.2011.12.016
  • Murray, R. M., Astrom, K. J., Boyd, S. P., Brockett, R. W., Stein, G., 2003. Future directions in control in an information-rich world. IEEE Control Systems Magazine 23 (2), 20-33. https://doi.org/10.1109/MCS.2003.1188769
  • Rajkumar, K., Srinivas, D., Anuradha, P., RajeshwarRao, A., 2021. Problemoriented and project-based learning (POPPL) as an innovative learning strategy for sustainable development in engineering education. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.01.796
  • Reguera, P., García, D., Domínguez, M., Prada, M., Alonso, S., 2015. A low-cost open source hardware in control education. case study: Arduinofeedback ms-150. IFAC-PapersOnLine 48 (29), 117-122. https://doi.org/10.1016/j.ifacol.2015.11.223
  • Robinson, M., 2005. Robotics-driven activities: Can they improve middle school science learning? Bulletin of Science, Technology & Society 25 (1), 73-84. https://doi.org/10.1177/0270467604271244
  • Rossiter, A., Serbezov, A., Visioli, A., Žáková, K., Huba, M., 2020. A survey of international views on a first course in systems and control for engineering undergraduates. IFAC Journal of Systems and Control 13, 100092. https://doi.org/10.1016/j.ifacsc.2020.100092
  • Rossiter, J., 2019. Evaluation of software tools for formative assessment of control topics. IFAC-PapersOnLine 52 (9), 292-297. https://doi.org/10.1016/j.ifacol.2019.08.223
  • Rossiter, J., Pasik-Duncan, B., Dormido, S., Vlacic, L., Jones, B., Murray, R., 2018. A survey of good practice in control education. European Journal of Engineering Education 43 (6), 801-823. https://doi.org/10.1080/03043797.2018.1428530
  • Samad, T., Annaswamy, A. M., 2013. The Impact of Control Technology, 2nd edition. IEEE Control Systems Society.
  • Sánchez, C., Muñoz de la Peña, D., Gómez-Estern, F., 2020. Automated generation of control design benchmark problems for computer-assessed education with doctus. Revista Iberoamericana de Automática e Informática Industrial 17 (1), 1-9. https://doi.org/10.4995/riai.2019.11243
  • Sánchez, J., Dormido, S., Esquembre, F., 2005. The learning of control concepts using interactive tools. Computer Applications in Engineering Education 13 (1), 84-98. https://doi.org/10.1002/cae.20033
  • Soriano, A., Marin, L., Valles, M., Valera, A., Albertos, P., 2014. Low cost platform for automatic control education based on open hardware. IFAC Proceedings Volumes 47 (3), 9044-9050. https://doi.org/10.3182/20140824-6-ZA-1003.01909
  • Stein, G., 2003. Respect the unstable. IEEE Control systems magazine 23 (4), 12-25. https://doi.org/10.1109/MCS.2003.1213600
  • Wagner, S. P., 1998. Robotics and children: Science achievement and problem solving. Journal of Computing in Childhood Education 9 (2), 149-92.
  • Ziegler, J. G., Nichols, N. B., et al., 1942. Optimum settings for automatic controllers. trans. ASME 64 (11).