The well adapted connection of a $$(J^{2}=\pm 1)$$ ( J 2 = ± 1 ) -metric manifold

  1. Etayo, Fernando
  2. Santamaría, Rafael
Revue:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas

ISSN: 1578-7303 1579-1505

Année de publication: 2016

Volumen: 111

Número: 2

Pages: 355-375

Type: Article

DOI: 10.1007/S13398-016-0299-X GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas

Objectifs de Développement Durable

Information sur le financement

Financeurs

Références bibliographiques

  • Barros, M., Romero, A.: Indefinite Kähler manifolds. Math. Ann. 261, 55–62 (1982)
  • Chern, S.S.: Characteristic classes of Hermitian manifolds. Ann. Math. 47, 85–121 (1946)
  • Cruceanu, V., Etayo, F.: On almost para-Hermitian manifolds. Algebras Groups Geom. 16(1), 47–61 (1999)
  • Cruceanu, V., Fortuny, P., Gadea, P.M.: A survey on paracomplex geometry. Rocky Mt. J. Math. 26, 83–115 (1996)
  • Etayo, F., Santamaría, R.: $$(J^2=\pm 1)$$ ( J 2 = ± 1 ) -metric manifolds. Publ. Math. Debrecen 57(3–4), 435–444 (2000)
  • Etayo, F., Santamaría, R.: Functorial connections on almost para-Hermitian manifolds. In: Proceedings of the Fourth International Workshop on Differential Geometry and Its Applications, pp. 243–256. Transilvania University Press, Braşov (2000)
  • Gadea, P.M., Muñoz Masqué, J.: Classification of almost parahermitian manifolds. J. Rend. Mat. Roma 11, 377–396 (1991)
  • Gadea, P.M., Muñoz Masqué, J., Pozo Coronado, L.M.: $$A$$ A -manifolds admitting a functorial connection. Ann. Mat. Pura Appl. 193(6), 1795–1805 (2014)
  • Ganchev, G.T., Borisov, A.V.: Note on the almost complex manifolds with a Norden metric. C. R. Acad. Bulgare Sci. 39(5), 31–34 (1986)
  • Ganchev, G., Mihova, V.: Canonical connection and the canonical conformal group on an almost complex manifold with $$B$$ B -metric. Annuaire Univ. Sofia Fac. Math. Inform. 81(1), 195–206 (1987)
  • Gray, A., Barros, M., Naveira, A.M., Vanhecke, L.: The Chern numbers of holomorphic vector bundles and formally holomorphic connections of complex vector bundles over almost-complex manifolds. J. Reine Angew. Math. 314, 84–98 (1980)
  • Gray, A., Hervella, L.M.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. 123(1), 35–58 (1980)
  • Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, I and II. Interscience, New York (1963, 1969)
  • Mihova, V.: Canonical connection and the canonical conformal group on a Riemannian almost-product manifold. Serdica Math. J. 15, 351–358 (1989)
  • Muñoz Masqué, J., Valdés, A.: A report on functorial connections and differential invariants. Rend. Mat. Roma. 17, 549–567 (1997)
  • Naveira, A.M.: A classification of Riemannian almost-product manifolds. Rend. Mat. Roma. 3, 577–592 (1983)
  • Pripoae, G.T.: Classification of semi-Riemannian almost product structures. In: Proceedings of the Conference of Applied Differential Geometry—General Relativity and the Workshop on Global Analysis. Differential Geometry and Lie Algebras, pp. 243–251. Geometry Balkan Press, Bucharest (2004)
  • Sierra, J.M., Valdés, A.: A canonical connection associated with certain $$G$$ G -structures. Czech. Math. J. 47(1), 73–82 (1997)
  • Staikova, M., Gribachev, K.: Canonical connections and their conformal invariants on Riemannian almost product manifolds. Serdica Math. J. 18, 150–161 (1992)
  • Teofilova, M.: Almost complex connections on almost complex manifolds with Norden metric. Trends in Differential Geometry. Complex Analysis Mathematical Physics, pp. 231–240. World Scientific, Singapore (2009)