The role of epigenetics in fish biology and reproduction: An insight into the methods applied to aquaculture

  1. Lombó, Marta
  2. Herráez, María Paz
  3. González-Rojo, Silvia
Book:
Cellular and Molecular Approaches in Fish Biology

Year of publication: 2022

Pages: 69-104

Type: Book chapter

DOI: 10.1016/B978-0-12-822273-7.00008-2 SCOPUS: 2-s2.0-85129001602 GOOGLE SCHOLAR lock_openOpen access editor

Sustainable development goals

Abstract

The environmental conditions to which fish are exposed (e.g., water temperature, pH, and presence of contaminants), the rearing density and the diet composition used in aquaculture, are among the factors with potential epigenetic effects. Such effects result from covalent modifications of the DNA or of its associated histones as well as by the presence of RNAs that modify the accession of the transcription machinery to the helix, thus affecting gene expression. This modification of the original epigenetic signature of a given cell/gene can be considered as a homeostatic response to face a changing environment. Unlike mutations, most epigenetic changes are reversible, since they do not affect the DNA sequence, but still they can result in alterations in the cell activity and the phenotype, and they can be mitotically and meiotically inherited. Epigenetic reprograming underlies many developmental processes such as gametogenesis or embryogenesis, it is the basis of environmentally regulated events such as fish sex differentiation, and it is related to phenotypic and metabolic changes promoted during fish domestication as well. For this reason, the study of the epigenetic profile is becoming essential to look into the molecular mechanisms underlying the processes involved in fish adaptation to environmental conditions. In this chapter, we will provide an overview of the most relevant epigenetic marks, summarize the events associated with fish farming that can result in modified epigenetic signatures, and review the epigenetic dynamics taking place throughout gametogenesis and embryo development in a model species. Moreover, the methods that can be applied for the analysis of the epigenetic landscape and the quantification of global and/or specific epigenetic marks will be critically reviewed.

Bibliographic References

  • A.C. Adam., K. Helvik Skjærven., P. Whatmore., M. Moren., K.K. Lie Parental high dietary arachidonic acid levels modulated the hepatic transcriptome of adult zebrafish (Danio rerio) progeny PLoS One 13 2018 10.1371/journal.pone.0201278.
  • A.C. Adam., K.K. Lie., P. Whatmore., L.M. Jakt., M. Moren., K.H. Skjærven Profiling DNA methylation patterns of zebrafish liver associated with parental high dietary arachidonic acid PLoS One 14 2019 10.1371/journal.pone.0220934.
  • D. Anastasiadi., F. Piferrer Epimutations in Developmental Genes Underlie the Onset of Domestication in Farmed European Sea Bass Mol. Biol. Evol. 36 2019 2252-2264 10.1093/molbev/msz153.
  • A.A. Bazzini., M.T. Lee., A.J. Giraldez Ribosome profiling shows that mi R-430 reduces translation before causing mRNA decay in zebrafish Science 336 2005 233-237 10.1126/science.1215704.
  • J. Beirão., E. Cabrita., S. Pérez-Cerezales., S. Martínez-Páramo., M.P. Herráez Effect of cryopreservation on fish sperm subpopulations Cryobiology 62 2011 22-31 10.1016/j.cryobiol.2010.11.005.
  • J. Beirão., F. Soares., M.P. Herráez., M.T. Dinis., E. Cabrita Changes in Solea senegalensis sperm quality throughout the year Anim. Reprod. Sci. 126 2011 122-129 10.1016/j.anireprosci.2011.04.009.
  • W.M. Berbel-Filho., N. Berry., D. Rodríguez-Barreto., S. Rodrigues Teixeira., C. Garcia de Leaniz., S. Consuegra Environmental enrichment induces intergenerational behavioural and epigenetic effects on fish Mol. Ecol. 29 2020 2288-2299 10.1111/mec.15481.
  • S.L. Berger The complex language of chromatin regulation during transcription Nature 447 7143 2007 407-412 10.1038/nature05915.
  • E.M. Bertucci., M.W. Mason., A.C. Camus., O.E. Rhodes., B.B. Parrott Chronic low dose irradiation alters hepatic transcriptional profiles, but not global DNA methylation in medaka (Oryzias latipes) Sci. Total Environ. 729 2020 138680 10.1016/j.scitotenv.2020.138680.
  • C. Best., H. Ikert., D.J. Kostyniuk., P.M. Craig., L. Navarro-Martin., L. Marandel., J.A. Mennigen Epigenetics in teleost fish: from molecular mechanisms to physiological phenotypes Comp. Biochem. Physiol. Part - B Biochem. Mol. Biol. 224 2018 210-244 10.1016/j.cbpb.2018.01.006.
  • A. Bird Perceptions of epigenetics Nature 447 2007 396-398 10.1038/nature05913 4477143.
  • S. Boltaña., D. Valenzuela-Miranda., A. Aguilar., S. Mackenzie., C. Gallardo-Escárate Long noncoding RNAs (lnc RNAs) dynamics evidence immunomodulation during ISAV-infected Atlantic salmon (Salmo salar) Sci. Rep. 6 2016 10.1038/srep22698.
  • M.C. Bouwmeester., S. Ruiter., T. Lommelaars., J. Sippel., H.M. Hodemaekers., E.-J. van den Brandhof., J.L.A. Pennings., J.H. Kamstra., J. Jelinek., J.-P.J. Issa., J. Legler., L.T.M. van der Ven Zebrafish embryos as a screen for DNA methylation modifications after compound exposure Toxicol. Appl. Pharmacol. 291 2016 84-96 10.1016/j.taap.2015.12.012.
  • U. Brykczynska., M. Hisano., S. Erkek., L. Ramos., E.J. Oakeley., T.C. Roloff., C. Beisel., D. Schübeler., M.B. Stadler., A.H.F.M. Peters Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa Nat. Struct. Mol. Biol. 17 2010 679-687 10.1038/nsmb.1821.
  • E. Burgerhout., M. Mommens., H. Johnsen., A. Aunsmo., N. Santi., Ø. Andersen Genetic background and embryonic temperature affect DNA methylation and expression of myogenin and muscle development in Atlantic salmon (Salmo salar) PLoS One 12 2017 e0179918 10.1371/journal.pone.0179918.
  • E. Cabrita., V. Robles., L. Rebordinos., C. Sarasquete., M.P. Herráez Evaluation of DNA damage in rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata) cryopreserved sperm Cryobiology 50 2005 144-153 10.1016/j.cryobiol.2004.12.003.
  • C. Campos., L.M.P. Valente., L.E.C. Conceição., S. Engrola., J.M.O. Fernandes Temperature affects methylation of the myogenin putative promoter, its expression and muscle cellularity in Senegalese sole larvae Epigenetics 8 2013 10.4161/epi.24178.
  • C. Campos., L.M.P. Valente., J.M.O. Fernandes Molecular evolution of zebrafish dnmt3 genes and thermal plasticity of their expression during embryonic development Gene 500 2012 93-100 10.1016/j.gene.2012.03.041.
  • I.G. Cannell., Y.W. Kong., M. Bushell How do microRNAs regulate gene expression? Biochem. Soc. Trans. 36 2008 1224-1231.
  • D.T. Carrell Epigenetic marks in zebrafish sperm: insights into chromatin compaction, maintenance of pluripotency, and the role of the paternal genome after fertilization Asian J. Androl. 13 2011 620-621 10.1038/aja.2011.37.
  • D.T. Carrell., S.S. Hammoud The human sperm epigenome and its potential role in embryonic development Mol. Hum. Reprod. 16 2010 37-47 10.1093/molehr/gap090.
  • G. Cavalli., E. Heard Advances in epigenetics link genetics to the environment and disease Nature 571 7766 2019 489-499 10.1038/s41586-019-1411-0.
  • A. Champroux., J. Cocquet., J. Henry-Berger., J.R. Drevet., A. Kocer A decade of exploring the mammalian sperm epigenome: paternal epigenetic and transgenerational inheritance Front. Cell Dev. Biol. 6 2018 50 10.3389/fcell.2018.00050.
  • A. Chatterjee., Y. Ozaki., P.A. Stockwell., J.A. Horsfield., I.M. Morison., S. Nakagawa Mapping the zebrafish brain methylome using reduced representation bisulfite sequencing Epigenetics 8 2013 979-989 10.4161/epi.25797.
  • A. Chatterjee., P.A. Stockwell., J.A. Horsfield., I.M. Morison., S. Nakagawa Base-resolution DNA methylation landscape of zebrafish brain and liver Genom. Data 2 2014 342-344 10.1016/j.gdata.2014.10.008.
  • F. Chédin The DNMT3 family of mammalian de novo DNA methyltransferases Progress in Molecular Biology and Translational Science 2011 Elsevier B.V. 255-285 10.1016/B978-0-12-387685-0.00007-X.
  • P. Cheung., F. Vallania., M. Dvorak., S.E. Chang., S. Schaffert., M. Donato., A.M. Rao., R. Mao., P.J. Utz., P. Khatri., A.J. Kuo Single-cell epigenetics-chromatin modification atlas unveiled by mass cytometry Clin. Immunol. 196 2018 40-48 10.1016/j.clim.2018.06.009.
  • A. Chimento., I. Casaburi., M. Bartucci., M. Patrizii., R. Dattilo., P. Avena., S. Ando., V. Pezzi., R. Sirianni Selective GPER activation decreases proliferation and activates apoptosis in tumor Leydig cells Cell Death Dis. 4 2013 e747 10.1038/cddis.2013.275.
  • B. Chowdhury., I.H. Cho., J. Irudayaraj Technical advances in global DNA methylation analysis in human cancers J. Biol. Eng. 2017 10.1186/s13036-017-0052-9.
  • F. Crick Central dogma of molecular biology Nature 227 1970 561-563 10.1038/227561a0.
  • B. Dai., C. Giardina., T.P. Rasmussen Quantitation of nucleosome acetylation and other histone posttranslational modifications using microscale NU-ELISA Methods Mol. Biol. 981 2013 167-176 10.1007/978-1-62703-305-3_13.
  • C. Delaney., S.K. Garg., R. Yung Analysis of DNA methylation by pyrosequencing Methods in Molecular Biology 2015 Humana Press Inc. 249-264 10.1007/978-1-4939-2963-4_19.
  • A.K.S. Dhanasiri., X. Chen., D. Dahle., P. Siriyappagouder., C.K. Fæste., J.M.O. Fernandes Dietary inclusion of plant ingredients induces epigenetic changes in the intestine of zebrafish Epigenetics 15 10 2020 1035-1051 10.1080/15592294.2020.1747777.
  • X. Dong., Z. Weng The correlation between histone modifications and gene expression Epigenomics 5 2013 113-116 10.2217/epi.13.13.
  • R. Duffié., D. Bourc’his Parental epigenetic asymmetry in mammals Current Topics in Developmental Biology 2013 Academic Press Inc. 293-328 10.1016/B978-0-12-416027-9.00009-7.
  • A. Eberharter., P.B. Becker Histone acetylation: A switch between repressive and permissive chromatin. Second in review on chromatin dynamics EMBO Rep. 3 2002 224-229 10.1093/embo-reports/kvf053.
  • E. Falisse., B. Ducos., P.A. Stockwell., I.M. Morison., A. Chatterjee., F. Silvestre DNA methylation and gene expression alterations in zebrafish early-life stages exposed to the antibacterial agent triclosan Environ. Pollut. 243 2018 1867-1877 10.1016/j.envpol.2018.10.004.
  • X. Fang., J. Corrales., C. Thornton., B.E. Scheffler., K.L. Willett Global and gene specific DNA methylation changes during zebrafish development Comp. Biochem. Physiol. B Biochem. Mol. Biol. 166 2013 99-108 10.1016/j.cbpb.2013.07.007.
  • R. Feil., M.F. Fraga Epigenetics and the environment: emerging patterns and implications Nat. Rev. Genet. 13 2012 97-109 10.1038/nrg3142.
  • G. Felsenfeld A brief history of epigenetics Cold Spring Harb. Perspect. Biol. 6 2014 10.1101/cshperspect.a018200.
  • C. Fernández-Díez., S. González-Rojo., M. Lombó., M.P. Herráez Impact of sperm DNA damage and oocyte-repairing capacity on trout development Reproduction 152 2016 57-67 10.1530/rep-16-0077.
  • C. Fernández-Díez., S. González-Rojo., J. Montfort., A. Le Cam., J. Bobe., V. Robles., S. Pérez-Cerezales., M.P. Herráez Inhibition of zygotic DNA repair: transcriptome analysis of the off spring in trout (Oncorhynchus mykiss) Reproduction 149 2015 101-111 10.1530/REP-14-0382.
  • M.F. Fraga., E. Uriol., L.B. Diego., M. Berdasco., M. Esteller., M.J. Cañal., R. Rodríguez High-performance capillary electrophoretic method for the quantification of 5-methyl 2′-deoxycytidine in genomic DNA: application to plant, animal and human cancer tissues Electrophoresis 23 2002 1677-1681 10.1002/1522-2683(200206)23:11<1677::AID-ELPS1677>3.0.CO;2-Z.
  • L.A. Gates., J. Shi., A.D. Rohira., Q. Feng., B. Zhu., M.T. Bedford., C.A. Sagum., S.Y. Jung., J. Qin., M.J. Tsai., S.Y. Tsai., W. Li., C.E. Foulds., B.W. O’Malley Acetylation on histone H3 lysine 9 mediates a switch from transcription initiation to elongation J. Biol. Chem. 292 2017 14456-14472 10.1074/jbc.M117.802074.
  • M.R. Gavery., K.M. Nichols., G.W. Goetz., M.A. Middleton., P. Swanson Characterization of genetic and epigenetic variation in sperm and red blood cells from adult hatchery and natural-origin steelhead, Oncorhynchus mykiss G3 (Bethesda) 8 2018 3723-3736 10.1534/g3.118.200458.
  • M.R. Gavery., S.B. Roberts Epigenetic considerations in aquaculture PeerJ 2017 2017 10.7717/peerj.4147.
  • K. Gombeau., S. Pereira., J.L. Ravanat., V. Camilleri., I. Cavalie., J.P. Bourdineaud., C. Adam-Guillermin Depleted uranium induces sex- and tissue-specific methylation patterns in adult zebrafish J. Environ. Radioact. 154 2016 25-33 10.1016/j.jenvrad.2016.01.004.
  • S. González-Rojo., C. Fernández-Díez., S.M. Guerra., V. Robles., M.P. Herraez Differential gene susceptibility to sperm DNA damage: analysis of developmental key genes in trout PLoS One 9 2014 1-21 10.1371/journal.pone.0114161.
  • S. González-Rojo., C. Fernández-Díez., S.M. Guerra., V. Robles., M.P. Herraez Differential gene susceptibility to sperm DNA damage: analysis of developmental key genes in trout PLoS One 9 12 2014 e114161 10.1371/journal.pone.0114161.
  • S. González-Rojo., M. Lombó., C. Fernández-Díez., M.P. Herráez Male exposure to bisphenol a impairs spermatogenesis and triggers histone hyperacetylation in zebrafish testes Environ. Pollut. 248 2019 368-379 10.1016/j.envpol.2019.01.127.
  • H. Guo., P. Zhu., F. Guo., X. Li., X. Wu., X. Fan., L. Wen., F. Tang Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing Nat. Protoc. 10 2015 645-659 10.1038/nprot.2015.039.
  • B.F. Hales., L. Grenier., C. Lalancette., B. Robaire Epigenetic programming: from gametes to blastocyst Birth Defects Res. A Clin. Mol. Teratol. 2011 10.1002/bdra.20781.
  • S.A. Hammond., C.J. Nelson., C.C. Helbing Environmental influences on the epigenomes of herpetofauna and fish Biochem. Cell Biol. 94 2016 95-100 10.1139/bcb-2015-0111.
  • B. Han., W. Li., Z. Chen., Q. Xu., J. Luo., Y. Shi., X. Li., X. Yan., J. Zhang Variation of DNA methylome of zebrafish cells under cold pressure PLoS One 11 2016 e0160358 10.1371/journal.pone.0160358.
  • L. Han., Z. Zhao Comparative analysis of CpG Islands in four fish genomes Comp. Funct. Genomics 2008 2008 1-6 10.1155/2008/565631 565631.
  • S.M. Ho., W.Y. Tang Techniques used in studies of epigenome dysregulation due to aberrant DNA methylation: an emphasis on fetal-based adult diseases Reprod. Toxicol. 23 3 2007 267-282 10.1016/j.reprotox.2007.01.004.
  • R. Holliday The inheritance of epigenetic defects Science 238 1987 163-170 10.1126/science.3310230.
  • S. Houwing., L.M. Kamminga., E. Berezikov., D. Cronembold., A. Girard., H. van den Elst., D.V. Filippov., H. Blaser., E. Raz., C.B. Moens., R.H.A. Plasterk., G.J. Hannon., B.W. Draper., R.F. Ketting A role for Piwi and pi RNAs in germ cell maintenance and transposon silencing in zebrafish Cell 129 2007 69-82 10.1016/j.cell.2007.03.026.
  • K. Howe., M.D. Clark., C.F. Torroja., J. Torrance., C. Berthelot., M. Muffato., J.E. Collins., S. Humphray., K. McLaren., L. Matthews., S. McLaren., I. Sealy., M. Caccamo., C. Churcher., C. Scott., J.C. Barrett., R. Koch., G.-J. Rauch., S. White., W. Chow., B. Kilian., L.T. Quintais., J.A. Guerra-Assunção., Y. Zhou., Y. Gu., J. Yen., J.-H. Vogel., T. Eyre., S. Redmond., R. Banerjee., J. Chi., B. Fu., E. Langley., S.F. Maguire., G.K. Laird., D. Lloyd., E. Kenyon., S. Donaldson., H. Sehra., J. Almeida-King., J. Loveland., S. Trevanion., M. Jones., M. Quail., D. Willey., A. Hunt., J. Burton., S. Sims., K. McLay., B. Plumb., J. Davis., C. Clee., K. Oliver., R. Clark., C. Riddle., D. Elliot., D. Eliott., G. Threadgold., G. Harden., D. Ware., S. Begum., B. Mortimore., B. Mortimer., G. Kerry., P. Heath., B. Phillimore., A. Tracey., N. Corby., M. Dunn., C. Johnson., J. Wood., S. Clark., S. Pelan., G. Griffiths., M. Smith., R. Glithero., P. Howden., N. Barker., C. Lloyd., C. Stevens., J. Harley., K. Holt., G. Panagiotidis., J. Lovell., H. Beasley., C. Henderson., D. Gordon., K. Auger., D. Wright., J. Collins., C. Raisen., L. Dyer., K. Leung., L. Robertson., K. Ambridge., D. Leongamornlert., S. McGuire., R. Gilderthorp., C. Griffiths., D. Manthravadi., S. Nichol., G. Barker., S. Whitehead., M. Kay., J. Brown., C. Murnane., E. Gray., M. Humphries., N. Sycamore., D. Barker., D. Saunders., J. Wallis., A. Babbage., S. Hammond., M. Mashreghi-Mohammadi., L. Barr., S. Martin., P. Wray., A. Ellington., N. Matthews., M. Ellwood., R. Woodmansey., G. Clark., J.D. Cooper., J. Cooper., A. Tromans., D. Grafham., C. Skuce., R. Pandian., R. Andrews., E. Harrison., A. Kimberley., J. Garnett., N. Fosker., R. Hall., P. Garner., D. Kelly., C. Bird., S. Palmer., I. Gehring., A. Berger., C.M. Dooley., Z. Ersan-Ürün., C. Eser., H. Geiger., M. Geisler., L. Karotki., A. Kirn., J. Konantz., M. Konantz., M. Oberländer., S. Rudolph-Geiger., M. Teucke., C. Lanz., G. Raddatz., K. Osoegawa., B. Zhu., A. Rapp., S. Widaa., C. Langford., F. Yang., S.C. Schuster., N.P. Carter., J. Harrow., Z. Ning., J. Herrero., S.M.J. Searle., A. Enright., R. Geisler., R.H.A. Plasterk., C. Lee., M. Westerfield., P.J. de Jong., L.I. Zon., J.H. Postlethwait., C. Nüsslein-Volhard., T.J.P. Hubbard., H. Roest Crollius., J. Rogers., D.L. Stemple The zebrafish reference genome sequence and its relationship to the human genome Nature 496 2013 498-503 10.1038/nature12111.
  • K. Hyun., J. Jeon., K. Park., J. Kim Writing, erasing and reading histone lysine methylations Exp. Mol. Med. 49 2017 e324 10.1038/emm.2017.11.
  • H. Jammes., C. Junien., P. Chavatte-Palmer Epigenetic control of development and expression of quantitative traits Reproduction, Fertility and Development 2011 64-74 10.1071/RD10259.
  • O. Jatllon., J.M. Aury., F. Brunet., J.L. Petit., N. Stange-Thomann., E. Maucell., L. Bouneau., C. Fischer., C. Ozouf-Costaz., A. Bernot., S. Nicaud., D. Jaffe., S. Fisher., G. Lutfalla., C. Dossat., B. Segurens., C. Dasilva., M. Salanoubat., M. Levy., N. Houdet., S. Castellano., V. Anthouard., C. Jubin., V. Castelli., M. Katinka., B. Vacherie., C. Blémont., Z. Skalli., L. Cattolico., J. Poulain., V. De Berardinis., C. Cruaud., S. Dupart., P. Brottler., J.P. Coutanceau., J. Gouzy., G. Parra., G. Lardier., C. Chapple., K.J. McKernan., P. McEwan., S. Bosak., M. Kellis., J.N. Volff., R. Gulgó., M.C. Zody., J. Mesirov., K. Lindblad-Toh., B. Birren., C. Nusbaum., D. Kahn., M. Robinson-Rechavi., V. Laudet., V. Schachter., F. Quétler., W. Saurin., C. Scarpeill., P. Wincker., E.S. Lander., J. Weissenbach., H. Roest Crollius Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype Nature 431 2004 946-957 10.1038/nature03025.
  • L. Jiang., J. Zhang., J.J. Wang., L. Wang., L. Zhang., G. Li., X. Yang., X. Ma., X. Sun., J. Cai., J. Zhang., X. Huang., M. Yu., X. Wang., F. Liu., C.I. Wu., C. He., B. Zhang., W. Ci., J. Liu Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos Cell 153 2013 773-784 10.1016/j.cell.2013.04.041.
  • P.A. Jones Functions of DNA methylation: islands, start sites, gene bodies and beyond Nat. Rev. Genet. 13 7 2012 484-492 10.1038/nrg3230.
  • M. Joshi., S. Rajender Long non-coding RNAs (lncRNAs) in spermatogenesis and male infertility Reprod. Biol. Endocrinol. 18 1 2020 103 10.1186/s12958-020-00660-6.
  • J.H. Kamstra., P. Aleström., J.M. Kooter., J. Legler Zebrafish as a model to study the role of DNA methylation in environmental toxicology Environ. Sci. Pollut. Res. 22 2015 16262-16276 10.1007/s11356-014-3466-7.
  • M. Karimi., S. Johansson., D. Stach., M. Corcoran., D. Grandér., M. Schalling., G. Bakalkin., F. Lyko., C. Larsson., T.J. Ekström LUMA (LUminometric methylation assay)-a high throughput method to the analysis of genomic DNA methylation Exp. Cell Res. 312 2006 1989-1995 10.1016/j.yexcr.2006.03.006.
  • M. Karimi., K. Luttropp., T.J. Ekström Global DNA methylation analysis using the luminometric methylation assay Methods Mol. Biol. 791 2011 135-144 10.1007/978-1-61779-316-5_11.
  • A.F. Kebede., R. Schneider., S. Daujat Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest FEBS J. 282 2015 1658-1674 10.1111/febs.13047.
  • H. Kimura Histone modifications for human epigenome analysis J. Hum. Genet. 58 7 2013 439-445 10.1038/jhg.2013.66.
  • R.M. Kohli., Y. Zhang TET enzymes, TDG and the dynamics of DNA demethylation Nature 502 7472 2013 472-479 10.1038/nature12750.
  • I. Konstantinidis., P. Sætrom., R. Mjelle., A.V. Nedoluzhko., D. Robledo., J.M.O. Fernandes Major gene expression changes and epigenetic remodelling in Nile tilapia muscle after just one generation of domestication Epigenetics 2020 1-16 10.1080/15592294.2020.1748914.
  • S. Kurdyukov., M. Bullock DNA methylation analysis: choosing the right method Biology (Basel) 5 1 2016 3 10.3390/biology5010003.
  • C. Labbé., V. Robles., M.P. Herraez Epigenetics in fish gametes and early embryo Aquaculture 472 2017 93-106 10.1016/J.AQUACULTURE.2016.07.026.
  • L.V. Laing., J. Viana., E.L. Dempster., M. Trznadel., L.A. Trunkfield., T.M. Uren Webster., R. van Aerle., G.C. Paull., R.J. Wilson., J. Mill., E.M. Santos Bisphenol A causes reproductive toxicity, decreases dnmt 1 transcription, and reduces global DNA methylation in breeding zebrafish (Danio rerio) Epigenetics 11 2016 526-538 10.1080/15592294.2016.1182272.
  • M. Lawrence., S. Daujat., R. Schneider Lateral thinking: how histone modifications regulate gene expression Trends Genet. 32 1 2016 42-56 10.1016/j.tig.2015.10.007.
  • C.Y. Lee., P.A. Grant Role of histone acetylation and acetyltransferases in gene regulation Toxicoepigenetics: Core Principles and Applications 2018 Elsevier 3-30 10.1016/B978-0-12-812433-8.00001-0.
  • H.J. Lee., R.F. Lowdon., B. Maricque., B. Zhang., M. Stevens., D. Li., S.L. Johnson., T. Wang Developmental enhancers revealed by extensive DNA methylome maps of zebrafish early embryos Nat. Commun. 6 2015 6315 10.1038/ncomms7315.
  • L.C. Lindeman., I.S. Andersen., A.H. Reiner., N. Li., H. Aanes., O. Østrup., C. Winata., S. Mathavan., F. Müller., P. Aleström., P. Collas Prepatterning of developmental gene expression by modified histones before zygotic genome activation Dev. Cell 21 2011 993-1004 10.1016/j.devcel.2011.10.008.
  • L.C. Lindeman., C.L. Winata., A. Håvard., M. Sinnakaruppan., P. Aleström., P. Collas Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos Int. J. Dev. Biol. 54 2010 803-813 10.1387/ijdb.103081ll.
  • Z.-Y. Liu., J.-F. Xing., W. Chen., M.-W. Luan., R. Xie., J. Huang., S.-Q. Xie., C.-L. Xiao MDR: an integrative DNA N6-methyladenine and N4-methylcytosine modification database for Rosaceae Hortic. Res. 6 2019 78 10.1038/s41438-019-0160-4.
  • Y. Liu., C. Yuan., S. Chen., Y. Zheng., Y. Zhang., J. Gao., Z. Wang Global and cyp 19a1a gene specific DNA methylation in gonads of adult rare minnow Gobiocypris rarus under bisphenol A exposure Aquat. Toxicol. 156 2014 10-16 10.1016/j.aquatox.2014.07.017.
  • M. Lombó., C. Fernández-díez., S. González-rojo., M.P. Herráez Genetic and epigenetic alterations induced by bisphenol A exposure during different periods of spermatogenesis: from spermatozoa to the progeny Sci. Rep. 1-13 2019 10.1038/s41598-019-54368-8.
  • M. Lombó., C. Fernández-Díez., S. González-Rojo., C. Navarro., V. Robles., M.P. Herráez Transgenerational inheritance of heart disorders caused by paternal bisphenol A exposure Environ. Pollut. 206 2015 667-678 10.1016/j.envpol.2015.08.016.
  • M. Lombó., S. González-Rojo., C. Fernández-Díez., M.P. Herráez Cardiogenesis impairment promoted by bisphenol A exposure is successfully counteracted by epigallocatechin gallate Environ. Pollut. 246 2019 1008-1019 10.1016/j.envpol.2019.01.004.
  • A.C.S. Luk., W.Y. Chan., O.M. Rennert., T.L. Lee Long noncoding RNAs in spermatogenesis: insights from recent high-throughput transcriptome studies Reproduction 147 5 2014 R131-R141 10.1530/REP-13-0594.
  • F. Lyko The DNA methyltransferase family: a versatile toolkit for epigenetic regulation Nat. Rev. Genet. 19 2 2018 81-92 10.1038/nrg.2017.80.
  • L. Marandel., O. Lepais., E. Arbenoits., V. Véron., K. Dias., M. Zion., S. Panserat Remodelling of the hepatic epigenetic landscape of glucose-intolerant rainbow trout (Oncorhynchus mykiss) by nutritional status and dietary carbohydrates Sci. Rep. 6 2016 32187 10.1038/srep32187.
  • R. Marmorstein., R.C. Trievel Histone modifying enzymes: structures, mechanisms, and specificities Biochim. Biophys. Acta, Gene Regul. Mech. 1789 1 2009 58-68 10.1016/j.bbagrm.2008.07.009.
  • J.R. McCarrey Distinctions between transgenerational and non-transgenerational epimutations Mol. Cell. Endocrinol. 398 2014 13-23 10.1016/j.mce.2014.07.016.
  • A. Meissner., A. Gnirke., G.W. Bell., B. Ramasahoye., E.S. Lander., R. Jaenisch Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis Nucleic Acids Res. 33 2005 5868-5877 10.1093/nar/gki901.
  • K. Mohsen., S. Johansson., T.J. Ekström., M. Karimi Using LUMA: a luminometric-based assay for global DNA-methylation Epigenetics 1 2006 45-48 10.4161/epi.1.1.2587.
  • L.D. Moore., T. Le., G. Fan DNA methylation and its basic function Neuropsychopharmacology 38 2013 23-38 10.1038/npp.2012.112.
  • R. Mudbhary., K.C. Sadler Epigenetics, development, and cancer: zebrafish make their ARK Birth Defects Res. C Embryo Today 93 2 2011 21671358 10.1002/bdrc.20207.
  • K. Muret., C. Désert., L. Lagoutte., M. Boutin., F. Gondret., T. Zerjal., S. Lagarrigue Long noncoding RNAs in lipid metabolism: literature review and conservation analysis across species BMC Genomics 20 1 2019 882 10.1186/s12864-019-6093-3.
  • P.J. Murphy., S.F. Wu., C.R. James., C.L. Wike., B.R. Cairns Placeholder nucleosomes underlie germline-to-embryo DNA methylation reprogramming Cell 172 2018 993-1006.e13 10.1016/j.cell.2018.01.022.
  • R. Nakato., T. Sakata Methods for ChIP-seq analysis: a practical workflow and advanced applications Methods 187 2020 44-53 10.1016/j.ymeth.2020.03.005.
  • L. Navarro-Martín., J. Viñas., L. Ribas., N. Díaz., A. Gutiérrez., L. Di Croce., F. Piferrer DNA methylation of the gonadal aromatase (cyp 19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass PLoS Genet. 7 2011 e1002447 10.1371/journal.pgen.1002447.
  • D. Noordermeer., D. Duboule Chromatin architectures and Hox gene collinearity Current Topics in Developmental Biology 2013 Academic Press Inc 113-148 10.1016/B978-0-12-416027-9.00004-8.
  • P.A. Olsvik., P. Whatmore., S.J. Penglase., K.H. Skjærven., M. Anglès d’Auriac., S. Ellingsen Associations between behavioral effects of bisphenol A and DNA methylation in zebrafish embryos Front. Genet. 10 2019 184 10.3389/fgene.2019.00184.
  • O. Ortega-Recalde., A. Goikoetxea., T.A. Hore., E.V. Todd., N.J. Gemmell The genetics and epigenetics of sex change in fish Annu. Rev. Anim. Biosci. 8 2020 47-69 10.1146/annurev-animal-021419-083634.
  • M. Partolina., H.C. Thoms., K.G. MacLeod., G. Rodriguez-Blanco., M.N. Clarke., A.V. Venkatasubramani., R. Beesoo., V. Larionov., V.S. Neergheen-Bhujun., B. Serrels., H. Kimura., N.O. Carragher., A. Kagansky Global histone modification fingerprinting in human cells using epigenetic reverse phase protein array Cell Death Dis. 3 2017 16077 10.1038/cddiscovery.2016.77.
  • E. Perera., S. Turkmen., P. Simó-Mirabet., M.J. Zamorano., H. Xu., F. Naya-Català., M. Izquierdo., J. Pérez-Sánchez Stearoyl-CoA desaturase (scd1a) is epigenetically regulated by broodstock nutrition in gilthead sea bream (Sparus aurata) Epigenetics 15 2020 536-553 10.1080/15592294.2019.1699982.
  • S. Pérez-Cerezales., A. Gutiérrez-Adán., S. Martínez-Páramo., J. Beirão., M.P. Herráez Altered gene transcription and telomere length in trout embryo and larvae obtained with DNA cryodamaged sperm Theriogenology 76 2011 1234-1245 10.1016/j.theriogenology.2011.05.028.
  • S. Pérez-Cerezales., S. Martínez-Páramo., J. Beirão., M.P. Herráez Evaluation of DNA damage as a quality marker for rainbow trout sperm cryopreservation and use of LDL as cryoprotectant Theriogenology 74 2010 282-289 10.1016/j.theriogenology.2010.02.012.
  • F. Piferrer., D. Anastasiadi., A. Valdivieso., N. Sánchez-Baizán., J. Moraleda-Prados., L. Ribas The model of the conserved epigenetic regulation of sex Front. Genet. 10 2019 857 10.3389/fgene.2019.00857.
  • M.E. Potok., D.A. Nix., T.J. Parnell., B.R. Cairns Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern Cell 153 2013 759-772 10.1016/j.cell.2013.04.030.
  • Y. Qian., C. Ji., S. Yue., M. Zhao Exposure of low-dose fipronil enantioselectively induced anxiety-like behavior associated with DNA methylation changes in embryonic and larval zebrafish Environ. Pollut. 249 2019 362-371 10.1016/j.envpol.2019.03.038.
  • A.M. Quinn., A. Simeonov Methods for activity analysis of the proteins that regulate histone methylation Curr. Chem. Genom. 5 Suppl 1 2011 95-105 10.2174/1875397301005010095.
  • B.H. Ramsahoye., D. Biniszkiewicz., F. Lyko., V. Clark., A.P. Bird., R. Jaenisch Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a Proc. Natl. Acad. Sci. U. S. A. 97 2000 5237-5242 10.1073/pnas.97.10.5237.
  • V. Robles., D.G. Valcarce., M.F. Riesco Non-coding RNA regulation in reproduction: their potential use as biomarkers Non-coding RNA Res. 4 2 2019 54-62 10.1016/j.ncrna.2019.04.001.
  • J.M. Santos-Pereira., L. Gallardo-Fuentes., A. Neto., R.D. Acemel., J.J. Tena Pioneer and repressive functions of p63 during zebrafish embryonic ectoderm specification Nat. Commun. 10 2019 1-13 10.1038/s41467-019-11121-z.
  • T. Sävilammi., S. Papakostas., E.H. Leder., L.A. Vøllestad., P.V. Debes., C.R. Primmer Cytosine methylation patterns suggest a role of methylation in plastic and adaptive responses to temperature in European grayling (Thymallus thymallus) populations Epigenetics 2020 1-18 10.1080/15592294.2020.1795597.
  • M.F. Seidl Adenine N6-methylation in diverse fungi Nat. Genet. 49 6 2017 823-824 10.1038/ng.3873.
  • C. Singleman., N.G. Holtzman Analysis of postembryonic heart development and maturation in the zebrafish, Danio rerio Dev. Dyn. 241 2012 1993-2004 10.1002/dvdy.23882.
  • M.K. Skinner Environmental epigenetics and a unified theory of the molecular aspects of evolution: a neo-Lamarckian concept that facilitates neo-Darwinian evolution Genome Biol. Evol. 7 2015 1296-1302 10.1093/gbe/evv073.
  • K. Skvortsova., C. Stirzaker., P. Taberlay The DNA methylation landscape in cancer Essays Biochem. 63 6 2019 797-811 10.1042/EBC20190037.
  • K. Skvortsova., K. Tarbashevich., M. Stehling., R. Lister., M. Irimia., E. Raz., O. Bogdanovic Retention of paternal DNA methylome in the developing zebrafish germline Nat. Commun. 10 2019 3054 10.1038/s41467-019-10895-6.
  • S.A. Smallwood., G. Kelsey De novo DNA methylation: a germ cell perspective Trends Genet. 28 1 2012 33-42 10.1016/j.tig.2011.09.004.
  • Z.D. Smith., M.M. Chan., T.S. Mikkelsen., H. Gu., A. Gnirke., A. Regev., A. Meissner A unique regulatory phase of DNA methylation in the early mammalian embryo Nature 484 2012 339-344 10.1038/nature10960.
  • Z.D. Smith., A. Meissner DNA methylation: roles in mammalian development Nat. Rev. Genet. 14 2013 204-220 10.1038/nrg3354.
  • A. Soubry., C. Hoyo., R.L. Jirtle., S.K. Murphy A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line Bioessays 36 2014 359-371 10.1002/bies.201300113.
  • G. Stefani., F.J. Slack Small non-coding RNAs in animal development Nat. Rev. Mol. Cell Biol. 9 3 2008 219-230 10.1038/nrm2347.
  • B.D. Strahl., C.D. Allis The language of covalent histone modifications Nature 403 2000 41-45 10.1038/47412.
  • G. Streisinger., C. Walker., N. Dower., D. Knauber., F. Singer Production of clones of homozygous diploid zebra fish (Brachydanio rerio) Nature 291 1981 293-296 10.1038/291293a0.
  • M. Susiarjo., M.S. Bartolomei You are what you eat, but what about your DNA? Science 345 6198 2014 733-734 10.1126/science.1258654.
  • K.H. Taylor., H. Shi., C.W. Caldwell Next generation sequencing: advances in characterizing the methylome Genes (Basel) 1 2010 143-165 10.3390/genes1020143.
  • M. Teng., X. Chen., C. Wang., M. Song., J. Zhang., S. Bi., C. Wang Life cycle exposure to propiconazole reduces fecundity by disrupting the steroidogenic pathway and altering DNA methylation in zebrafish (Danio rerio) Environ. Int. 135 2020 105384 10.1016/j.envint.2019.105384.
  • E.V. Todd., O. Ortega-Recalde., H. Liu., M.S. Lamm., K.M. Rutherford., H. Cross., M.A. Black., O. Kardailsky., J.A. Marshall Graves., T.A. Hore., J.R. Godwin., N.J. Gemmell Stress, novel sex genes, and epigenetic reprogramming orchestrate socially controlled sex change Sci. Adv. 5 7 2019 eaaw7006 10.1126/sciadv.aaw7006.
  • T.M. Uren Webster., D. Rodriguez-Barreto., S.A.M. Martin., C. Van Oosterhout., P. Orozco-terWengel., J. Cable., A. Hamilton., C. Garcia De Leaniz., S. Consuegra Contrasting effects of acute and chronic stress on the transcriptome, epigenome, and immune response of Atlantic salmon Epigenetics 13 2018 1191-1207 10.1080/15592294.2018.1554520.
  • A. Valdivieso., L. Ribas., A. Monleón-Getino., L. Orbán., F. Piferrer Exposure of zebrafish to elevated temperature induces sex ratio shifts and alterations in the testicular epigenome of unexposed offspring Environ. Res. 186 2020 109601 10.1016/j.envres.2020.109601.
  • A. Varriale DNA methylation, epigenetics, and evolution in vertebrates: facts and challenges Int. J. Evol. Biol. 2014 2014 1-7 10.1155/2014/475981.
  • M.H. Vickers Early life nutrition, epigenetics and programming of later life disease Nutrients 6 2014 2165-2178 10.3390/nu6062165.
  • A. Villar-Garea., L. Israel., A. Imhof Analysis of histone modifications by mass spectrometry Curr. Protoc. Protein Sci. 92 1 2008 e54 10.1002/0471140864.ps1410s51.
  • C.H. Waddington The Strategy of the Genes; A Discussion of some Aspects of Theoretical Biology 1957 Allen & Unwin.
  • S.Y. Wang., K. Lau., K.P. Lai., J.W. Zhang., A.C.K. Tse., J.W. Li., Y. Tong., T.F. Chan., C.K.C. Wong., J.M.Y. Chiu., D.W.T. Au., A.S.T. Wong., R.Y.C. Kong., R.S.S. Wu Hypoxia causes transgenerational impairments in reproduction of fish Nat. Commun. 7 2016 12114 10.1038/ncomms12114.
  • J.W. Wei., K. Huang., C. Yang., C.S. Kang Non-coding RNAs as regulators in epigenetics Oncol. Rep. 37 2017 3-9 10.3892/or.2016.5236.
  • S.-F. Wu., H. Zhang., B.R. Cairns Genes for embryo development are packaged in blocks of multivalent chromatin in zebrafish sperm Genome Res. 21 2011 578-589 10.1101/gr.113167.110.
  • H. Xing., C. Wang., H. Wu., D. Chen., S. Li., S. Xu Effects of atrazine and chlorpyrifos on DNA methylation in the brain and gonad of the common carp Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 168 2014 11-19 10.1016/j.cbpc.2014.11.002.
  • A. Zachary Ostrow., C.J. Viggiani., J.G. Aparicio., O.M. Aparicio ChIP-Seq to analyze the binding of replication proteins to chromatin Methods Mol. Biol. 1300 2015 155-168 10.1007/978-1-4939-2596-4_11.
  • T. Zhang., S. Cooper., N. Brockdorff The interplay of histone modifications-writers that read EMBO Rep. 16 2015 1467-1481 10.15252/embr.201540945.
  • M. Zhang., S. Yang., R. Nelakanti., W. Zhao., G. Liu., Z. Li., X. Liu., T. Wu., A. Xiao., H. Li Mammalian ALKBH1 serves as an N 6-mA demethylase of unpairing DNA Cell Res. 30 2020 197-210 10.1038/s41422-019-0237-5.