Uso de recursos biológicos efectivos en la prevención de enfermedades de las plantas cultivadas: El caso de la judía común y trichoderma

  1. Antonio, M. De Ron 1
  2. A. Paula Rodiño 1
  3. Fernando López 2
  4. Juan L. Tejada Hinojoza 1
  5. Sara Mayo-Prieto 3
  6. Santiago Gutiérrez 3
  7. Pedro A. Casquero 3
  1. 1 Misión Biológica de Galicia (MBG)
  2. 2 Misión Biológica de Galicia (MBG) y Universidade de Santiago de Compostela
  3. 3 Universidad de León
    info

    Universidad de León

    León, España

    ROR https://ror.org/02tzt0b78

Revista:
Investigación: cultura, ciencia y tecnología

ISSN: 1889-4399

Año de publicación: 2021

Número: 25

Páginas: 12-17

Tipo: Artículo

Otras publicaciones en: Investigación: cultura, ciencia y tecnología

Referencias bibliográficas

  • Altomare, C.; Norvell, W. A.; Björkman, T.; Harman, G. E. (1999). Solubilization of phosphates and micronutrients by the plant-growthpromoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65 (7): 2926-2933.
  • Benítez, T.; Rincón, A. M.; Limón, M. C.; Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7 (4): 249-260.
  • Boller, T.; Felix, G. (2009). A renaissance of elicitors: perception of microbeassociated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60 (1): 379-406.
  • Cardoza, R. E.; Vizcaíno, J. A.; Hermosa, M. R.; Sousa, S.; González, F. J. et al. (2005). Cloning and characterization of the erg1 gene of Trichoderma harzianum: effect of the erg1 silencing on ergosterol biosynthesis and resistance to terbinafine. Fungal Genet Biol 43 (3): 164-178.
  • Carro-Huerga, G.; Compant, S.; Gorfer, M.; Cardoza, R. E.; Schmoll, M et al. (2020). Colonization of Vitis vinifera L. by the endophyte Trichoderma sp. strain T154: Biocontrol activity against Phaeoacremonium minimum. Front Plant Sci 11: 1170.
  • Chet, I.; Harman, G. E.; Baker, R. (1981). Trichoderma hamatum: Its hyphal interactions with Rhizoctonia solani and Pythium spp. Microb Ecol 7 (1): 29-38.
  • Contreras-Cornejo, H. A.; Macías-Rodríguez, L.; Cortes-Penagos, C.; LópezBucio, J. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxindependent mechanism in Arabidopsis. Plant Physiol 149 (3): 1579-1592.
  • De Ron, A. M. (ed.) (2015). Grain Legumes. Series: Handbook on plant breeding. Springer Science+Business Media, New York, USA. 438 pp.
  • De Ron, A.M.; Kalavacharla, V. (K); Álvarez-García, S.; Casquero, P. A.; Carro-Huelga, G. et al. (2019). Common bean genetics, breeding, and genomics for adaptation to changing to new agri-environmental conditions. En: Kole C (Ed.) Genomic designing of climate-smart pulse crops: 1-106. Springer Nature Switzerland.
  • Druzhinina, I. S.; Seidl-Seiboth, V.; Herrera-Estrella, A.; Horwitz, B. A.; Kenerley, C. M. et al. (2011). Trichoderma: The genomics of opportunistic success. Nature Rev Microbiol 9 (10): 749-759.
  • Fravel, D. R. (1988). The role of antibiosis in the biocontrol of plant diseases Annu Rev Phytopathol 26: 75-91.
  • Gravel, V.; Antoun, H.; Tweddell, R. J. (2007). Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biol Biochem 39 (8): 1968-1977.
  • Harman, G. E. (2000). Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 84 (4): 377-393.
  • Harman, G. E.; Howell, C. R.; Viterbo, A.; Chet, I.; Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev 2 (1): 43-56.
  • Hermosa, M. R.; Viterbo, A.; Chet, I.; Monte, E. (2012). Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158 (1): 17-25.
  • Hermosa, R.; Rubio, M. B.; Cardoza, R. E.; Nicolás, C.; Monte, E. et al. (2013). The contribution of Trichoderma to balancing the costs of plant growth and defense. International Microbiol, 16 (2), 69-80.
  • Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87 (1): 4-10.
  • Keswani, C.; Mishra, S.; Sarma, B. K.; Singh, S. P.; Singh, H. B. (2014). Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol 98:533-544.
  • Lorito M, Harman GE, Hayes CK, Broadway RM, Tronsmo A et al. (1993) Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chito- biosidase. Phytopathology 83(3):302–307.
  • Lorito, M.; Hayes, C. K.; Di Pietro, A.; Woo, S. L.; Harman, G. E. (1994). Purification, characterization, and synergistic activity of a glucan 1,3-b-glucosidase and an N-acetyl-b-glucosaminidase from Trichoderma harzianum. Phytopathology 84 (4): 398-405.
  • Lorito, M.; Woo, S. L.; Harman, G. E.; Monte, E. (2010). Translational research on Trichoderma: From ’omics to the field. Ann RevPhytopath, 48 (1), 395–417. https://doi.org/10.1146/annurev-phyto-073009-114314
  • Lu, Z.; Tombolini, R.; Woo, S.; Zeilinger, S.; Lorito, M. et al. (2004). In vivo study of Trichoderma- pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems. Appl Environ Microbiol 70 (5): 3073-3081
  • Marra, R.; Lombardi, N.; d’Errico, G.; Troisi, J.; Scala. G. et al. (2019). Application of Trichodermastrains and metabolites enhances soybean productivity and nutrient content. J Agric Food Chem 67: 1814-1822.
  • Mayo-Prieto, S.; Campelo, M. P.; Lorenzana, A.; Rodríguez-González, A.; Reinoso, B. et al. (2020). Antifungal activity and bean growth promotion of Trichoderma strains isolated from seed vs soil. Eur J Plant Pathol 158 (4): 817-828.
  • Mayo-Prieto Sara, Marra R, Vinale F, Rodríguez-González Á, Woo SL et al. (2019) Effect of Trichoderma velutinum and Rhizoctonia solani on the metabolome of bean plants (Phaseolus vulgaris L.). Int J Molec Sci 20 (3): 549.
  • Mayo-Prieto, S.; Porteous-Álvarez, A. J.; Mezquita-García, S.; RodríguezGonzález, Á.; Carro-Huerga, G. et al. (2021). Influence of physicochemical characteristics of bean crop soil in Trichoderma spp. development. Agron 11(2):274.
  • Mayo, S.; Cominelli, E.; Sparvoli, F.; González-López, O.; RodríguezGonzález, A. et al. (2016). Development of a qPCR strategy to select bean genes involved in plant defense response and regulated by the Trichoderma velutinum - Rhizoctonia solani interaction. Front Plant Sci 7: 1109.
  • Mayo, S.; Gutiérrez, S.; Malmierca, M. G.; Lorenzana, A.; Campelo, M. P, et al. (2015). Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes. FrontPlant Sci 6: 685.
  • Mayo, S.; Izquierdo, H.; González-López, Ó.; Rodríguez-González, Á.; Lorenzana, A. et al. (2016). Effect of farnesol, a compound produced by Trichoderma when growing on bean (Phaseolus vulgaris L.). Planta Med 82 (S01): S1-S381.
  • Mhlongo, M. I.; Steenkamp, P. A.; Piater, L. A.; Madala, N. E.; Dubery, I. A. (2016). Profiling of altered metabolomic states in Nicotiana tabacum cells induced by priming agents. Front Plant Sci 7: 1527.
  • Monte, E. (2001). Understanding Trichoderma: between biotechnology and microbial ecology. Int Microbiol 4: 1-4.
  • Öğüt, M.; Er, F. (2006). Micronutrient composition of field-grown dry bean and wheat inoculated with Azospirillum and Trichoderma. J Plant NutrSoil Sci 169 (5): 699-703.
  • Paulitz, T. C. (1990). Biochemical and ecological aspect of competition in biological control. In New directions in biological control. Alternatives for suppressing agricultural, Pests and diseases, Baker RR, Dunn PE (eds) Wiley-Liss Inc, New York, USA, p 837.
  • Piotrowski, M.; Volmer, J. J. (2006). Cyanide metabolism in higher plants: Cyanoalanine hydratase is a NIT4 homolog. Plant Molec Biol 61 (1-2): 111- 122.
  • Reino, J. L.; Guerrero, R. F.; Hernández-Galán, R.; Collado, I. G. (2007). Secondary metabolites from speciesof the biocontrol agent Trichoderma. Phytochem Rev 7 (1): 89-123.
  • Rodiño, A. P.; De La Fuente, M.; De Ron, A. M.; Lema, M. J.; Drevon, J. J. et al. (2011). Variation for nodulation and plant yield of common bean genotypes and environmental effects on the genotype expression. Plant Soil 346: 349-361.
  • Rubio, M.; Hermosa, R.; Reino, J.; Collado, I.; Monte, E. (2009). Thctf1 transcription factor of Trichoderma harzianum is involved in 6-pentyl-2Hpyran-2-one production and antifungal activity. Fungal Genet Biol 46 (1) 17-27.
  • Shoresh, M.; Harman, G. E.; Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48: 21-43.
  • Sivasithamparam, K.; Ghisalberti, E. L. (1998). Secondary metabolism in Trichoderma and Gliocladium. Taylor and Francis. London, vol. 139, p 191.
  • Tadeo, F. R.; Gómez-Cadenas, A. (2008). Fisiología de las plantas y el estrés. En: Azcón-Bieto J, Talón M (eds) Fundamentos de fisología vegetal: 577- 597. McGraw-Hill, Barcelona.
  • Vargas, W. A.; Crutcher, F. K.; Kenerley, C. M. (2011). Functional characterization of a plant-like sucrose transporter from the beneficial fungus Trichoderma virens. Regulation of the symbiotic association with plants by sucrose metabolism inside the fungal cells. New Phytol 189 (3): 777-789.
  • Veitch, N. C. (2009). Isoflavonoids of the Leguminosae. Nat Prod Rep 26 (6): 776.
  • Vinale, F.; Flematti, G.; Sivasithamparam, K.; Lorito, M.; Marra, R. et al. (2009). Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Products 72 (11): 2032-2035.
  • Vinale, F.; Sivasithamparam, K. (2020). Beneficial effects of Trichoderma secondary metabolites on crops. Phytother Res 34 (11): 2835-2842.
  • Vinale, F.; Sivasithamparam, K.; Ghisalberti, E. L.; Woo, S. L.; Nigro, M. et al. (2014). Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol J 8:127.
  • Pascale, A.; Vinale, F.; Manganiello, G.; Nigro, M.; Lanzuise, S. et al. (2017). Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Protect 92: 176-181.
  • Viterbo, A.; Landau, U.; Kim, S.; Chernin, L.; Chet, I. (2010). Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Letters 305 (1): 42-48.
  • Vitti, A.; La Monaca, E.; Sofo, A.; Scopa, A.; Cuypers, A. et al. (2015). Beneficial effects of Trichoderma harzianum T-22 in tomato seedlings infected by Cucumber mosaic virus (CMV). BioControl 60 (1):135-147.
  • Vizcaino, J. A.; Sanz, L.; Basilio, A.; Vicente, F.; Gutiérrez, S. et al. (2005). Screening of antimicrobial activities in Trichoderma isolates representing three Trichoderma sections. Mycol Res 109 (12): 1397-1406.
  • Wang, K. L. C.; Li, H.; Ecker, J. R. (2002). Ethylene biosynthesis and signaling networks. Plant Cell 14 (1): S131-S151.
  • Whipps, J. M.; Lumsden, R. D. (2001). Commercial use of fungi as plant disease biological control agents: status and prospects. En: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agent: progress problems and potential: pp 9-22. CAB International.
  • Woo, S. L.; Scala, F.; Ruocco, M.; Lorito, M. (2006). The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology 96 (2): 181-185.