Biochar and Energy Production: Valorizing Swine Manure through Coupling Co-Digestion and Pyrolysis

  1. Rosas, José G.
  2. Gómez, Xiomar
  3. González, Judith
  4. Smith, Richard
  5. González, Rubén
  1. 1 Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), University of León
  2. 2 Electrical and Systems Engineering Department. Electrical Engineering Area, University of León,
Revista:
C — Journal of Carbon Research

ISSN: 2311-5629

Año de publicación: 2020

Volumen: 6

Número: 2

Páginas: 43

Tipo: Artículo

DOI: 10.3390/C6020043 GOOGLE SCHOLAR

Otras publicaciones en: C — Journal of Carbon Research

Resumen

Anaerobic digestion is an established technological option for the treatment of agricultural residues and livestock wastes beneficially producing renewable energy and digestate as biofertilizer. This technology also has significant potential for becoming an essential component of biorefineries for valorizing lignocellulosic biomass due to its great versatility in assimilating a wide spectrum of carbonaceous materials. The integration of anaerobic digestion and pyrolysis of its digestates for enhanced waste treatment was studied. A theoretical analysis was performed for three scenarios based on the thermal needs of the process: The treatment of swine manure (scenario 1), co-digestion with crop wastes (scenario 2), and addition of residual glycerine (scenario 3). The selected plant design basis was to produce biochar and electricity via combined heat and power units. For electricity production, the best performing scenario was scenario 3 (producing three times more electricity than scenario 1), with scenario 2 resulting in the highest production of biochar (double the biochar production and 1.7 times more electricity than scenario 1), but being highly penalized by the great thermal demand associated with digestate dewatering. Sensitivity analysis was performed using a central composite design, predominantly to evaluate the bio-oil yield and its high heating value, as well as digestate dewatering. Results demonstrated the effect of these parameters on electricity production and on the global thermal demand of the plant. The main significant factor was the solid content attained in the dewatering process, which excessively penalized the global process for values lower than 25% TS.

Referencias bibliográficas

  • 10.3390/en12173287
  • Szymańska, (2019), Energies, 12, 10.3390/en12010155
  • O’Keeffe, (2020), Sustainability, 12
  • 10.3390/c6020032
  • 10.3390/microorganisms8020188
  • O’Connor, (2020), Energies, 13, 10.3390/en13030637
  • 10.1007/s11157-016-9396-8
  • 10.1007/s10163-018-0714-9
  • 10.1080/09593330.2014.913688
  • 10.1016/j.apenergy.2015.03.024
  • 10.3390/su12041490
  • 10.1080/10934529.2017.1312189
  • 10.1007/s12010-015-1919-1
  • 10.1002/bbb.258
  • 10.1002/ep.11860
  • 10.3390/ijerph14121483
  • 10.1007/s13593-013-0196-z
  • Dębowski, (2020), Processes, 8, 10.3390/pr8050517
  • 10.3390/chemengineering4020025
  • 10.1002/jpln.201700200
  • 10.1021/acssuschemeng.7b04359
  • Nisticò, (2019), Resources, 8, 10.3390/resources8010024
  • 10.3390/molecules24030469
  • 10.1080/15226514.2019.1647405
  • 10.3390/c4030051
  • 10.3390/c4040059
  • 10.3390/en12081518
  • 10.3390/c6020021
  • 10.3390/c4030041
  • 10.1016/j.copbio.2016.02.004
  • 10.3390/su11092533
  • 10.1007/s12649-017-9928-7
  • 10.3390/agriculture10030062
  • 10.3390/soilsystems3040069
  • 10.1007/s11104-009-0050-x
  • 10.1111/gcbb.12363
  • 10.1007/s00374-020-01436-1
  • 10.3390/c4040053
  • 10.3390/c4040063
  • 10.1007/s12649-015-9459-z
  • 10.1007/s11356-020-08828-8
  • 10.1007/s11356-018-2644-4
  • 10.1016/j.bej.2018.06.010
  • 10.1007/s12257-011-0117-4
  • 10.1007/s11270-016-2773-7
  • 10.1016/0141-4607(80)90014-1
  • 10.13031/2013.33976
  • 10.1016/j.resconrec.2006.11.004
  • 10.1016/j.biortech.2009.12.025
  • 10.1016/j.enpol.2007.03.023
  • https://ec.europa.eu/eurostat/statistics-explained/index.php/Agricultural_production_-_crops
  • 10.1016/j.energy.2014.03.103
  • 10.2166/wst.2001.0613
  • 10.1016/j.wasman.2013.09.013
  • 10.1007/s12649-012-9118-6
  • 10.1007/s12155-013-9313-8
  • 10.1007/s12155-011-9130-x
  • 10.1016/j.egypro.2017.03.400
  • 10.1016/j.biortech.2007.01.056
  • 10.1016/j.jaap.2008.11.003
  • 10.1007/s00107-015-0911-3
  • 10.1016/j.njas.2009.07.006
  • 10.1016/j.biombioe.2019.105395
  • 10.1016/j.fuel.2016.12.063
  • 10.1007/s10163-017-0582-8
  • 10.1007/s12155-019-10003-y
  • 10.1007/s10973-018-7464-8
  • 10.1016/j.agee.2011.03.007
  • 10.1016/j.watres.2015.04.043
  • 10.1016/j.rser.2011.10.005
  • https://www.thermo-system.com/es/tambien-resolvemos-sus-problemas-de-lodos
  • 10.1007/s11356-020-09461-1
  • 10.1007/s11356-019-04647-8
  • 10.1016/j.renene.2019.02.053
  • 10.1115/ES2017-3126
  • 10.1016/j.apenergy.2018.08.085
  • https://www.rensmart.com/Calculators/KWH-to-CO2
  • 10.1641/0006-3568(2005)055[0593:EAFECD]2.0.CO;2