Evaluation of different methodologies for the design of the wellfield in shallow geothermal systems

  1. González-Aguilera, Diego
  2. Sáez-Blázquez, Cristina
  3. Martín-Nieto, Ignacio
  4. Farfán-Martín, Arturo
  1. 1 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Revista Facultad de Ingeniería Universidad de Antioquia

ISSN: 2422-2844 0120-6230

Año de publicación: 2021

Tipo: Artículo

DOI: 10.17533/UDEA.REDIN.20210425 GOOGLE SCHOLAR

Otras publicaciones en: Revista Facultad de Ingeniería Universidad de Antioquia

Resumen

Low enthalpy geothermal resources play an essential role in climate change mitigation. When ensuring the correct future operation of ground-source heat pump systems, an accurate design is mandatory. In this sense, different methodologies can be implemented. Although using sophisticated software constitutes the most optimal solution, its implementation is sometimes inviable in certain projects (the increase of the initial investment required is not justified in small plants). This work is focused on evaluating and comparing procedures used in the design of shallow geothermal systems. Thus, the research includes a simple method based on manual calculations, the Climasoft free application, Earth Energy Designer (EED) software, and the new geothermal tool GES-CAL developed by researchers from the TIDOP Research Group (University of Salamanca). The objective is to evaluate this new software and compare the results of all the detailed methodologies. This comparison derives from applying these tools in the calculation of the same case study (a single-family house placed in Ávila, Spain). Results show that the easiest methods involve oversized well-field schemas that also mean higher initial investments. Regarding GES-CAL, it is considered an accurate and valid alternative for the design of all heat exchanger configurations, especially for those installations placed in the region of Ávila. However, EED is recommended to calculate high-power geothermal systems that require an exhaustive analysis of the ground and the heat carrier fluid behaviour.

Referencias bibliográficas

  • A. Casasso and R. Sethi, “Assessment and minimization of potential environmental impacts of ground source heat pump (gshp) systems,” Water, vol. 11, no. 8, Jul. 29, 2019. [Online]. Available: https://doi.org/10.3390/w11081573
  • S. Boahen, K. H. Lee, S. Cho, and J. M. Choi, “A study on the evaluation of the annual energy consumption for a geotermal heat pump system with open loop and closed loop ground heat exchangers,” International Journal of Air-Conditioning and Refrigeration, vol. 25, no. 3, Jul. 24, 2017. [Online]. Available: https://doi.org/10.1142/S2010132517500249
  • F. D. Longa, L. P. Nogueira, J. Limberger, J. D. V. Wees, and B. V. D. Zwaan, “Scenarios for geothermal energy deployment in europe,” Energy, vol. 206, Sep. 1, 2020. [Online]. Available: http://www.techweb.com/se/index.html
  • A. F. Gheysari, H. M. Holländer, P. Maghoul, and A. Shalaby, “Sustainability, climate resiliency, and mitigation capacity of geothermal heat pump systems in cold regions,” Geothermics, vol. 91, Mar. 2021. [Online]. Available: https://doi.org/10.1016/j.geothermics.2020.101979
  • L. Rybach and M. Mongillo, “Geothermal sustainability - a review with identified research needs,” Geothermal Resource Council Transactions, vol. 30, 2006. [Online]. Available: t.ly/eHji
  • D. Saner and et al., “Is it only co2 that matters? a life cycle perspective on shallow geothermal systems,” Renewable and Sustainable Energy Reviews, vol. 14, no. 7, Sep. 2010. [Online]. Available: https://doi.org/10.1016/j.rser.2010.04.002
  • G. Wang, W. Wang, J. Luo, and Y. Zhang, “Assessment of three types of shallow geothermal resources and ground-source heat-pump applications in provincial capitals in the yangtze river basin, china,” Renewable and Sustainable Energy Reviews, vol. 111, Sep. 2019.
  • [Online]. Available: https://doi.org/10.1016/j.rser.2019.05.029
  • M. Babaei and H. M. Nick, “Performance of low-enthalpy geotermal systems: Interplay of spatially correlated heterogeneity and well-doublet spacings,” Applied Energy, vol. 253, Nov. 1, 2019. [Online]. Available: https://doi.org/10.1016/j.apenergy.2019.113569
  • R. M. Singh, A. K. Sani, and T. Amis, “An overview of ground-source heat pump technology,” Managing Global Warming, 2019. [Online]. Available: https://doi.org/10.1016/B978-0-12-814104-5.00015-6l
  • S. A. Ghoreishi-Madiseh, A. F. Kuyuk, and M. A. D. Brito, “An analytical model for transient heat transfer in ground-coupled heat exchangers of closed-loop geothermal systems,” Applied Thermal Engineering, vol. 150, Mar. 5, 2019. [Online]. Available: https://doi.org/10.1016/j.applthermaleng.2019.01.020
  • X. Song and et al., “Numerical analysis of the heat production performance of a closed loop geothermal system,” Renewable Energy, vol. 120, May. 1996. [Online]. Available: https://doi.org/10.1016/j.renene.2017.12.065
  • G. Wang and et al., “Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system,” Renewable Energy, vol. 163, Ene. 2021. [Online]. Available: https://doi.org/10.1016/j.renene.2020.08.121
  • K. Nagano, T. Katsura, and S. Takeda, “Development of a design and performance prediction tool for the ground source heat pump system,” Applied Thermal Engineering, vol. 26, no. 14-15, Oct. 2006. [Online]. Available: https://doi.org/10.1016/j.applthermaleng.2005.12.003
  • X. Li, Z. Chen, and J. Zhao, “Simulation and experiment on the thermal performance of u-vertical ground coupled heat exchanger,”Applied Thermal Engineering, vol. 26, no. 14-15, Oct. 2006. [Online]. Available: https://doi.org/10.1016/j.applthermaleng.2005.12.007
  • Q. Gao, M. Li, and M. Yu, “Experiment and simulation of temperatura characteristics of intermittently-controlled ground heat exchanges,” Renewable Energy, vol. 35, no. 6, Jun. 2010. [Online]. Available: https://doi.org/10.1016/j.renene.2009.10.039
  • J. C. Ríos, “Integration capacity of geothermal energy in supermarkets through case analysis,” Sustainable Energy Technologies and Assessments, vol. 34, Ago. 2019. [Online]. Available: https://doi.org/10.1016/j.seta.2019.04.007
  • H. Skarphagen, D. Banks, B. S. Frengstad, and H. Gether, “Design considerations for borehole thermal energy storage (btes): A review with emphasis on convective heat transfer,” Hindawi, vol. 2019, Apr. 22, 2019. [Online]. Available: https://doi.org/10.1155/2019/4961781
  • C. S. Blázquez, A. F. Martín, P. C. García, L. S. Sánchez, and S. Jiménez, “Analysis of the process of design of a geotermal installation,” Renewable Energy, vol. 89, Abr. 2016. [Online]. Available: https://doi.org/10.1016/j.renene.2015.11.067
  • C. S. Blázquez and et al., “Thermal conductivity map of the avila region (spain) based on thermal conductivity measurements of different rock and soil samples,” Geothermics, vol. 65, Jun. 2017. [Online]. Available: https://doi.org/10.1016/j.geothermics.2016.09.001
  • C. S. Blázquez and et al., “Efficiency analysis of the main components of a vertical closed-loop system in a borehole heat exchanger,” Energies, Special Issue Low Enthalpy Geothermal Energy, vol. 10, no. 2, Feb. 10, 2017. [Online]. Available: https://doi.org/10.3390/en10020201
  • C. S. Blázquez, A. F. Martín, I. M. Nieto, and D. G. Aguilera, “Measuring of thermal conductivities of soils and rocks to be used in the calculation of a geothermal installation,” Energies, vol. 10, no. 6, Jun. 10, 2017. [Online]. Available: https://doi.org/10.3390/en10060795
  • C. S. Blázquez and et al., “Analysis and study of different grouting materials in vertical geothermal closed-loop systems,” Renewable Energy, vol. 114, no. Parte B, Dic. 2017. [Online]. Available: https://doi.org/10.1016/j.renene.2017.08.011
  • C. S. Blázquez, D. Borge-Diez, I. M. Nieto, A. F. Martín, and D. González-Aguilera, “Technical optimization of the energy supply in geothermal heat pumps,” Geothermics, vol. 81, Sep. 2019. [Online]. Available: https://doi.org/10.1016/j.geothermics.2019.04.008
  • C. S. Blázquez, A. F. Martín, I. M. Nieto, D. González-Aguilera, and P. C. García, “Comparative analysis of different methodologies used to estimate the ground thermal conductivity in low enthalpy geothermal systems,” Energies, vol. 12, no. 9, May. 2, 2019. [Online]. Available: https://doi.org/10.3390/en12091672
  • E. de Ingenierías del Campus de la UVa en Soria, “Ii congreso iberoamericano de ciudades inteligentes 2019,” unpublished.
  • VDI 4640-2, Thermal use of the underground – Ground source heat pump systems, Verlag des Vereins Deutscher Ingenieure, 2013.
  • C. S. Bláquez, I. M. Nieto, R. Mora, A. F. Martín, and D. González-Aguilera, “Ges-cal: A new computer program for the design of closed-loop geothermal energy systems,”
  • Geothermics, vol. 87, Sep. 2020. [Online]. Available: https://doi.org/10.1016/j.geothermics.2020.101852
  • A. T. E. de Climatización y Refrigeración (ATECYR), “Guía técnica de diseño de sistemas de intercambio geotérmico de circuito cerrado,” Instituto para la Diversificación y Ahorro de la Energía (IDAE), Madrid, Tech. Rep., Jun. 2012.
  • U.-E. 100715-1. (2014, May.) Diseño, ejecución y seguimiento de una instalación geotérmica somera. parte 1: sistemas de circuito cerrado vertical. Asociación Española de Normalización. [Online]. Available: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0052899
  • U.-E. I. 13790. (2011, Nov.) Eficiencia energética de los edificios. Cálculo del consumo de energía para calefacción y refrigeración de espacios. Asociación Española de Normalización. [Online]. Available: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0048301