Mapping the potential distribution of frozen ground in Tucarroya (Monte Perdido Massif, the Pyrenees)

  1. Enrique Serrano Cañadas
  2. Alfonso Pisabarro
  3. Juan Ignacio López Moreno
  4. Manuel Gómez Lende
  5. Raúl Martín Moreno
  6. Ibai Ieltxu Rico Lozano
Revista:
Cuadernos de investigación geográfica: Geographical Research Letters

ISSN: 0211-6820 1697-9540

Any de publicació: 2020

Volum: 46

Número: 2

Pàgines: 395-411

Tipus: Article

DOI: 10.18172/CIG.4414 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Altres publicacions en: Cuadernos de investigación geográfica: Geographical Research Letters

Objectius de Desenvolupament Sostenible

Resum

This paper shows the creation of a map of frozen ground potential for the Tucarroya valley in Ordesa National Park. To create this map, it was necessary to combine the identified landforms associated to the presence of frozen ground by fieldwork, ground temperature data continuously recorded during two years by automatic loggers, a Basal Temperature of Snow (BTS) survey, and predictor variables derived from a high resolution Digital Elevation Model (DEM). Four environments have been differentiated: unfrozen ground, seasonal frozen ground, possible permafrost and probable permafrost. The map confirms a very limited variety and extension of permafrost, above 2700 m a.s.l. on gentle and shadowed slopes. Seasonal frozen ground is the most common thermal regime, as it can be developed above 2500 m a.s.l. Snow-pack duration and thickness tightly control the duration of frozen ground and the freezing-thawing cycles. Frost activity and unfrozen ground is restricted from 2570 to 2750 m a.s.l.

Informació de finançament

This research was funded by I+D+I projects CGL2015-68144-R, Hidroibernieve-CGL2017-82216-R (MINECO of Spanish government-FEDER) and Geoparque Sobrarbe-Comarca del Sobrabe (R- ADM15/57).

Finançadors

  • FEDER
    • CGL2015-68144-R
    • CGL2017-82216-R
  • MINECO Spain
    • CGL2015-68144-R
    • CGL2017-82216-R

Referències bibliogràfiques

  • Barrère, P. 1952. Évolution méchanique et nivation sur les versants calcaires de la haute montagne pyrénéenne. Pirineos 24, 201-213.
  • Boyé, M. 1952. Gélivation et cryoturbation dans le massif du Mont Perdu (Pyrénées Centrales). Pirineos 23, 5-29.
  • Bockheim, J.G. 2015. Global Distribution of Cryosols with Mountain Permafrost: An Overview. Permafrost and Periglacial Processes 26 (19) 1-12. https://doi.org/10.1002/ppp.1830.
  • Boeckli, L., Brenning, A., Gruber, S., Noetzli, J. 2012. Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics. The Cryosphere 6, 807-820.
  • Chueca, J., Julián, A. 2010. Caracterización térmica del suelo en el circo del Aneto (Pirineo central aragonés): cartografía de variaciones estacionales. In: J.J. Blanco, M.A. de Pablo, M. Ramos (Eds.). Ambientes periglaciares, permafrost y variabilidad climática. Universidad de Alcalá, Alcalá de Henares, pp. 55-60.
  • Delaloye, R. 2004. Contribution à l’étude du pergélisol de montagne en zone marginale. GeoFocus 10, 240 pp.
  • Evans, D.J.A., Ria, K., Orton, C. 2017. Periglacial geomorphology of summit tors on Bodmin moor, Cornwall, SW England. Journal of Maps 13, 342-349. https://doi.org/10.1080/1744564720171308283.
  • Funk, M., Hoelzle, M. 1992. A model of potential direct solar radiation for investigating occurrences of mountain permafrost. Permafrost and Periglacial Processes 3, 39-142. https://doi.org/10.1002/ppp.3430030211.
  • Garcia-Ruiz, J.M., Marti-Bono, C. 2001. Mapa geomorfológico del Parque Nacional de Ordesa y Monte Perdido. Organismo Autónomo de Parques Nacionales, Madrid, 106 pp.
  • García-Ruiz, J.M., Palacios, D., De Andrés, N., Valero, B.L., López-Moreno, J.I., Sanjuán, Y. 2014. Holocene and Little Ice Age Glacial activity in the Marboré Cirque, Monte Perdido Massif, Central Spanish Pyrenees. The Holocene 24 (11), 1439-1452. https://doi.org/10.1177%2F0959683614544053.
  • González-García, M. 2013. La alta montaña periglaciar en el Pirineo Central Español: procesos, formas y condiciones ambientales. Tesis doctoral, Universidad de Málaga, Málaga.
  • González-García, M, Serrano, E, González-Trueba, J.J. 2014. Elaboración de un mapa térmico de suelos en la alta montaña de la Maladeta (Pirineo central). In: A. Gómez-Ortíz, F. Salvador, M. Oliva, M. Salvá, (Eds.). Avances, métodos y técnicas en el estudio del periglaciarismo. Universitat de Barcelona, Barcelona, pp. 277-286.
  • Gruber, S., Haeberli, W. 2009. Mountain permafrost. In: R. Margesin (Ed.) Permafrost Soils. Springer-Verlag, Berlin, pp. 33-44. https://doi.org/10.1007/978-3-540-69371-0.
  • Gruber, S., Hoelzle, M. 2001. Statistical modelling of mountain permafrost distribution: local calibration and incorporation of remotely sensed data. Permafrost and Periglacial Processes 12 (1), 69-77. https://doi.org/10.1002/ppp.374.
  • Haeberli, W., Noetzli, J., Arenson, L., Delaloye, R., Gätner-Roer, I., Gruber, S., Isaksen, K., Kneisel, K., Krautblatter, M., Phillips, M. 2010. Mountain permafrost: development and challenges of a young research field. Journal of Glaciology 56 (200), 1043-1058. https://doi.org/10.3189/002214311796406121.
  • Heginbottom, J.A. 2002. Permafrost mapping: a review. Progress in Physical Geography 26, 623-642. https://doi.org/10.1191%2F0309133302pp355ra.
  • Hoelzle, M. 1996. Mapping and modelling of mountain permafrost distribution in the Alps. Norwegian Journal of Geography 50, 11-15. https://doi.org/10.1080/00291959608552347.
  • Hoelzle, M., Haeberli, W., Keller, F. 1993. Aplication of BTS measurements for modelling mountains permafrost distribution. The 6th International Conference on Permafrost, Beijing, China, pp. 272-277.
  • Janke, J.R. 2005. Modeling past and future alpine permafrost distribution in the Colorado Front Range. Earth Surface Processes and Landforms 30 (12), 1495-1508. https://doi.org/10.1002/esp.1205.
  • Keller, F. 1992. Automated mapping of mountain permafrost using the program PERMAKART within the geographical information system ARC/INFO. Permafrost and Periglacial Processes 3 (2), 133-138. https://doi.org/10.1002/ppp.3430030210.
  • Keller, F., Frauenfelder, R., Gardaz, J.M., Hoezle, M., Kneisel, C., Lugon, R., Phillips, M., Reynard, E., Wenker, L. 1998. Permafrost map of Switzerland. 7º International Permafrost Conference. Université de Laval, Yellowknife, pp. 557-562.
  • Lambiel, C. 2006. Le pergélisol dans les terrains sédimentaires à forte déclivité : distribution, régime thermique et instabilités. PhD Thesis, Université de Lausanne, 260 pp.
  • Lambiel, C., Pieracci, K. 2008. Permafrost distribution in Talus Slopes located within the Alpine Periglacial Belt, Swiss Alps. Permafrost and Periglacial Processes 19, 293-304. https://doi.org/10.1002/ppp.624.
  • Leunda, M., González-Sampériz P, Gil-Romera G., Aranbarri J., Moreno, A., Oliva-Urcia B., Sevilla, M., Valero, B. 2017. The Late-Glacial and Holocene Marboré Lake sequence (2,612 m a.s.l., Central Pyrenees, Spain): Testing high altitude sites sensitivity to millennial scale vegetation and climate variability. Global and Planetary Change 157, 214-231. https://doi.org/10.1016/j.gloplacha.2017.08.008.
  • López-Moreno, J.I., Revuelto, J. Rico, I., Chueca-Cía, J., Julián, A., Serreta, A., Serrano, E., Vicente-Serrano, S., Azorin-Molina, C., Alonso-González, E., García-Ruiz, J.M. 2016. Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981. The Cryosphere 10 (2), 681-694. https://doi.org/10.5194/tc-10-681-2016.
  • López-Moreno J.I., Alonso-González, E., Montserrat, O., del Río L.M., Otero, J., Lapazaran, J., Luzi, G., Dematteis, N., Serreta, A., Rico, I., Serrano, E., Bartolomé, M., Moreno, A., Buisan, S., Revuelto, J. 2019. Ground-based remote sensing techniques for diagnosis of the current state and recent evolution of the Monte Perdido Glacier, Spanish Pyrenees. Journal of Glaciology 65 (249), 85-100. https://doi.org/10.1016/j.gloplacha.2017.08.008.
  • Lugon, R., Delaloye, R., Serrano, E., Reynard, E., Lambiel, C., González Trueba, J.J. 2004. Permafrost and Little Ice Age relationships, Posets massif, Central Pyrenees, Spain. Permafrost and Periglacial Processes 15, 207-220. http://doi.org/10.1002/ppp.494.
  • Magnin, F., Josnin, J.Y., Ravanel, L., Pergaud, J., Pohl, B., Deline, P. 2017. Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century. The Cryosphere 11, 1813-1834. https://doi.org/10.5194/tc-11-1813-2017.
  • Martínez de Pisón, E, Arenillas, M. 1988. Los glaciares actuales del Pirineo Español. In: La nieve en el Pirineo español. MOPU, Madrid, pp. 29-98.
  • Martínez de Pisón, E., Arozena, M.E., Serrano, E. 2001. Las unidades de paisajes naturales de la reserva de la biosfera Ordesa-Viñamala: estudio geográfico. Comité Español del Programa MAB, Madrid.
  • Martín-Moreno, R. 2006. Estudio Comparativo de formas y procesos glaciares y periglaciares desde la Pequeña Edad del Hielo: altas latitudes noruegas (Spitsbergen y Jotunheimen) y altas altitudes españolas (Pirineos, Sistema Central y Teide). PhD Thesis, Universidad Autónoma de Madrid, Madrid.
  • Nicolás, P. 1981. Morfología del circo de Tucarroya (Macizo del Monte Perdido, Pirineo aragonés). Cuadernos de Investigación Geográfica 7, 51-80. https://doi.org/10.18172/cig.884
  • Oliva, M., Serrano, E., Gomez-Ortiz, A.G., Gonzalez-Amuchastegui, M.J., Nieuwendam, A., Palacios, D., Perez-Alberti, A.P., Pellitero, R., Ruiz, J., Valcarcel, M., Vieira, G. Antoniades, D.2016. The periglaciation of the Iberian Peninsula. Spatial and temporal variability. Quaternary Science Reviews 137, 176-199. https://doi.org/10.1016/j.quascirev.2016.02.017.
  • Oliva, M., Ruiz-Fernández, J., Barriendos, M., Benito, G., Cuadrat, J.M., García-Ruiz, J.M., Giralt, S., Gómez-Ortiz; A., Hernández, A., López-Costas, O., López-Moreno, J.I., López-Sáez, J.A., Martínez-Cortizas, A., Moreno, A., Prohom, M., Saz, M.A., Serrano, E., Tejedor, E., Trigo, R., Valero, B., Vicente-Serrano, S. 2018. The Little Ice Age in the Iberian Mountains. Earth-Science Reviews 177, 175-208.
  • Oliva, M, Žebre., M., Guglielmin, M., Hughes, P.D., Çiner, A., Vieira, G., Bodin, X., Andrés, N., Colucci, R.R., García-Hernández, C., Mora, C., Nofre, J., Palacios, D., Pérez-Alberti, A., Ribolini, A., Ruiz-Fernández, J., Sarıkaya, M.A., Serrano, E., Urdea, P., Valcárcel, M., Woodward, J.C., Yıldırım, C. 2018. Permafrost conditions in the Mediterranean Region since the Last Glaciation. Earth-Science Reviews 185, 397-436. https://doi.org/10.1016/j.earscirev.2018.06.018.
  • PNOA (2015). Ortofotos digitales de los vuelos PNOA, CC-BY 4.0 ign.es. Available in: http://centrodedescargas.cnig.es/CentroDescargas/index.jsp.
  • Rico, I., Izaguirre, E., Serrano, E., López-Moreno, J.I. 2017. Current glacier area in the Pyrenees: an updated assessment. Pirineos 72, e029 https://doi.org/103989/Pirineos 2017172004.
  • Ríos, L.M., Galera, J.M., Baretino, D. 1989. Mapa Geológico de España 1:50.000, Hoja nº 146 Bujaruelo. ITGE, Madrid.
  • Serrano, E., Agudo, C., Martínez De Pisón, E. 1999. Rock glaciers in the Pyrenees. Permafrost and Periglacial Processes 10, 101-106. https://doi.org/10.1002/(SICI)1099-1530(199901/03)10:1%3C101::AID-PPP308%3E3.0.CO;2-U.
  • Serrano, E., Agudo, C., Delaloye, R., González-Trueba, J.J. 2001. Permafrost distribution in the Posets massif, Central Pyrenees. Norwegian Journal of Geography 55, 245-252. http://doi.org/10.1080/00291950152746603.
  • Serrano, E., Morales, C., González-Trueba, J.J., Martín-Moreno, R. 2009. Cartografía del permafrost de montaña en los Pirineos españoles. Finisterra 87, 45-54. https://doi.org/10.18055/Finis1376.
  • Serrano, E., González Trueba, J.J., Sanjosé, J.J. 2011. Dinámica, evolución y estructura de los glaciares rocosos de los Pirineos. Cuadernos de Investigación Geográfica 37 (2), 145-170. https://doi.org/10.18172/cig.1260.
  • Serrano, E., Gómez-Lende, M., Belmonte, A., Sancho, C., Sánchez-Benítez, J, Bartolomé, M., Leunda, M., Moreno, A., Hivert, B. 2018. Ice caves in Spain. In: A. Persiou, S.E. Lauritzen (Eds.), Ice Caves. Elsevier, Amsterdam, pp. 625-656.
  • Serrano, E., Martín‐Moreno, R. 2018. Surge glaciers during the Little Ice Age in the Pyrenees. A controversial dynamics. Cuadernos de Investigación Geográfica 44, 213-244. https://doi.org/10.18172/cig.3399.
  • Serrano, E., Oliva, M., González-García, M., López-Moreno, J.I., González-Trueba, J.J., Martín-Moreno, R., Gómez-Lende, M., Martín-Díaz, J., Nofre, J., Palma, P. 2018. Post-Little Ice Age paraglacial processes and landforms in the high Iberian Mountains: a review. Land Degradation and Development 29 (11), 4186-4208. https://doi.org/10.1002/ldr3171.
  • Serrano, E., Sanjosé, J.J., Gómez-Lende, M., López-Moreno, J.I., Pisabarro, A, Martínez-Fernández, A. 2019. Periglacial environments and frozen ground in the Central Pyrenean high mountain area: Ground thermal regime and distribution of landforms and processes. Permafrost and Periglacial Processes 30 (4), 292-309. https://doi.org/10.1002/ppp.2032.
  • Serrano, E., López-Moreno, J.I., Gómez-Lende, M., Pisabarro, A., Martín-Moreno, R., Rico, I., Alonso-González, E. 2020. Relationship between frozen ground and periglacial processes in temperate high mountains: a case study at Monte Perdido-Tucarroya area (the Pyrenees, Spain). Journal of Mountains Science, in press.
  • Valero, B., Oliva, B., Moreno, A., Rico, M., Mata, P., Salazar, A., Rieradeval, M., García-Ruiz, J.M., Chueca, J., González-Sampériz, P., Pérez, A., Salabarnada, A., Pardo, A., Arruebo Muñio, T., Sancho, C., Barreiro, F., Bartolomé, M., García-Prieto, E., Gil-Romera, G., López-Merino, L., Sevilla-Callejo, M., Tarrats, P. 2013. Dinámica glacial, clima y vegetación en el Parque Nacional de Ordesa y Monte Perdido durante el Holoceno. In: Memorias de Proyectos de investigación en Parques Nacionales: 2009-2012. OAPN, Madrid.
  • Van Everdingen, R.O. 1978. Frost mounds at Bear Rock, near Fort Norman, N.W.T., 1975-1976. Canadian Journal of Earth Sciences 15, 263-276. https://doi.org/10.1139/e78-027.
  • Zhang, Y., Olthof, I., Fraser, R.H., Wolfe, S.A. 2014. A new approach to mapping permafrost and change incorporating uncertainties in ground condition and climate projections. The Cryosphere 8 (6), 2177-2194. https://doi.org/10.5194/tcd-8-1895-2014.