Células troncales y reprogramación celular

  1. Marta Martín-López 1
  2. María C. Marín 13
  3. Margarita Marrqués 24
  1. 1 Instituto de Biomedicina (IBIOMED). Universidad de León
  2. 2 Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL). Universidad de Léon
  3. 3 Departamento de Biología Molecular, Universidad de León
  4. 4 Departamento de Producción Animal, Universidad de León
Revista:
AmbioCiencias: revista de divulgación

ISSN: 1988-3021

Año de publicación: 2018

Número: 16

Páginas: 25-37

Tipo: Artículo

DOI: 10.18002/AMBIOC.V0I16.5752 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: AmbioCiencias: revista de divulgación

Resumen

A partir de diferentes estadios del desarrollo embrionario murino, es posible establecer in vitro cultivos de células troncales que presentan dos rasgos distintivos: su capacidad para proliferar indefinidamente, dando lugar a nuevas células troncales (auto-renovación), y su capacidad de diferenciación a todos los tipos celulares que forman el organismo adulto (pluripotencia). Durante décadas, el tránsito del estado pluripotente al estado de diferenciación terminal fue considerado irreversible; sin embargo, en la actualidad es posible revertir este proceso e inducir la pluripotencia en células somáticas mediante la expresión de factores de transcripción que regulan la identidad de las células troncales embrionarias. Este proceso, denominado reprogramación celular, da lugar a la generación de células troncales pluripotentes inducidas (iPSCs), que presentan características moleculares y funcionales similares a las de células troncales embrionarias (ESCs). Por ello, las células reprogramadas son una valiosa herramienta en Biomedicina, y están siendo empleadas para modelar enfermedades humanas o para la búsqueda de nuevos tratamientos en patologías que no responden a los enfoques clínicos tradicionales

Referencias bibliográficas

  • Brambrink, T., Foreman, R., Welstead, G.G., Lengner, C.J., Wernig, M., Suh, H. y Jaenisch, R. 2008. Sequential expression of pluripotency markers during direct reprogramming ofmouse somatic cells. Cell StemCell 2: 151-159.
  • Brons, I.G., Smithers, L.E., Trotter, M.W., Rugg-Gunn, P., Sun, B., Chuva de Sousa Lopes, S.M. et al. 2007. Derivation of pluripotent epiblast stem cells frommammalianembryos. Nature 448: 191-195.
  • Buganim, Y., Faddah, D.A., Cheng, A.W., Itskovich, E., Markoulaki, S., Ganz, K. et al. 2012. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150: 1209-1222.
  • Du, P., Pirouz,M., Choi, J.,Huebner, A.J., Clement, K.,Meissner, A. et al. 2018. An intermediate pluripotent state controlled by microRNAs is required for thenaive-to-primed stemcell transition. Cell StemCell 22:851-864.
  • Evans, M.J. y Kaufman, M.H. 1981. Establishment in culture of pluripotential cells frommouse embryos.Nature 292: 154-156. Gaspar-Maia, A., Alajem, A., Meshorer, E. y Ramalho-Santos, M. 2011. Open chromatin in pluripotency and reprogramming. Nature Reviews Molecular Cell Biology 12: 36-47.
  • Higuchi, A., Ling, Q.D., Kumar, S.S., Munusamy, M.A., Alarfaj, A.A., Chang, Y., et al. 2015. Generation of pluripotent stem cells without the use of genetic material. Laboratory Investigation95: 26-42.
  • Hochedlinger, K. y Jaenisch R. 2015. Induced pluripotency and epigenetic reprogramming. Cold Spring Harbor Perspectives in Biology 7: pii: a019448.
  • Hockemeyer. D. y Jaenisch, R. 2016. Induced pluripotent stem cells meet genome editing. Hong,H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa,O.,Nakagawa,M. et al.
  • Suppression of induced pluripotent stem cell generation by the p. 53-p21 pathway.Nature 460: 1132-1135.
  • Ilic, D., Devito, L., Miere, C. y Codognotto, S. 2015. Human embryonic and induced pluripotent stem cells in clinical trials. British Medical Bulletin 116: 19-27.
  • Kalkan, T. y Smith, A. 2014. Mapping the route from naive pluripotency to lineage specification. Philosophical Transactions of The Royal Society Of London Series B, Biological sciences 369.
  • Karagiannis, P., Takahashi, K., Saito, M., Yoshida, Y., Okita, K., Watanabe, A. et al. 2019. Induced pluripotent stem cells and their use in human models of disease and development. PhysiologicalReviews 99: 79-114.
  • Kawamura,T., Suzuki, J.,Wang,Y.V.,Menendez, S.,Morera, L.B.,Raya,A., et al. 2009. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460: 1140-1144.
  • Klimczewska K., Kasperczuk A. y Suwinska A. 2018. The regulative nature of mammalian embryos. Current topics in Developmental Biology 128: 105-149.
  • Li, R., Liang, J., Ni, S., Zhou, T., Qing, X., Li, H. et al. 2010. A mesenchymal-toepithelial
  • transition initiates and is required for the nuclear reprogramming ofmouse fibroblasts. Cell StemCell 7: 51-63.
  • Loh, Y.H.,Wu, Q., Chew, J.L., Vega, V.B., Zhang,W., Chen, X., et al. 2006. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stemcells. NatureGenetics 38: 431-440.
  • Marion, R.M., Strati, K., Li, H., Murga, M., Blanco, R., Ortega, S et al. 2009. iPS cell genomic integrity.Nature 460: 1149-1153.
  • Martin-Lopez, M., Maeso-Alonso, L., Fuertes-Alvarez, S., Balboa, D., Rodríguez-Cortez, V.,Weltner, J., et al. 2017. p73 is required for appropriate BMPinduced mesenchymal-to-epithelial transition during somatic cell reprogramming.CellDeath&Disease8: e3034.
  • Matsui, Y., Zsebo, K. y Hogan, B.L. 1992. Derivation of pluripotential embryonic stemcells frommurine primordial germcells inculture.Cell 70:841-847.
  • Nefzger, C.M., Rossello, F.J., Chen, J., Liu, X., Knaupp, A.S., Firas, J. et al. 2017. Cell type of origin dictates the route to pluripotency. Cell Reports 21: 2649-2660.
  • Pflaum, J., Schlosser, S. y Müller, M. 2014. p53 family and cellular stress responses incancer.Frontiers inOncology 4: 285.
  • Popowski, M. y Tucker, H. 2015. Repressors of reprogramming. World Journal of Stem Cells 7: 541-546.
  • Raya, A., Rodriguez-Piza, I., Guenechea, G., Vassena, R., Navarro, S., Barrero, M.J. et al. 2009. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stemcells.Nature 460: 53-59.
  • Rezza, A., Sennett, R. y Rendl, M. 2014. Adult stem cell niches: cellular and molecular components. Current Topics in Developmental Biology 107:333-372.
  • Rony, I.K., Baten, A., Bloomfield, J.A., Islam, M.E., Billah, M.M. y Islam, K.D. 2015. Inducing pluripotency in vitro: recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming.CellProliferation48: 140-156.
  • Samavarchi-Tehrani, P., Golipour, A., David, L., Sung, H.K., Beyer, T.A., Datti, A., et al. 2010. Functional genomics reveals a BMP-drivenmesenchymalto-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7: 64-77.
  • Seah M.K.Y. y Messerschmidt D.M. From germline to soma: epigenetic dynamics in the mouse preimplantation embryo. 2018. Current topics in Developmental Biology 128: 203-235.
  • Shi, Y., Inoue H., Wu, J.C. y Yamanaka S. 2017.Induced pluripotent stem cell technology: a decade of progress. Nature Reviews Drug Discovery 16: 115-130.
  • Silva, J., Nichols, J., Theunissen, T.W., Guo, G., van Oosten, A.L., Barrandon, O., et al. 2009. Nanog is the gateway to the pluripotent ground state.Cell 138: 722-737.
  • Stadtfeld, M., Maherali, N., Breault, D.T. y Hochedlinger, K. 2008. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell StemCell 2: 230-240.
  • Warren, C.R. y Cowan, C.A. 2018. Humanity in a dish: population genetics with iPSCs.Trends inCellBiology 28: 46-57.
  • Wu, J. y Izpisua Belmonte, J.C. 2015. Dynamic Pluripotent Stem Cell States andTheirApplications.Cell StemCell 2015 17: 509-525.
  • Takahashi S, Kobayashi S, Hiratani I. 2018. Epigenetic differences between naive and primed pluripotent stem cells. Cellular and Molecular Life Sciences 75: 1191-1203.
  • Takahashi, K., Tanabe, K., Ohnuki, M, Narita, M, Ichisaka T, Tomoda K, et al. 2007. Induction of pluripotent stem cells from adulthumanfibroblasts by defined factors fromadult human fibroblasts by defined factors. Cell 131: 861-72.
  • Takahashi, K. y Yamanaka, S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676.
  • Takahashi, K. y Yamanaka S. 2016. Induced pluripotent stem cell technology: a decade of transcription factor-mediated reprogramming to pluripotency. Nature Reviews Molecular Cell Biology 17: 183-193.
  • Weinberger L, Ayyash M, Novershtern N, Hanna JH. 2016. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nature Reviews Molecular Cell Biology 17: 155-169.
  • Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J. y Campbell, K.H.S. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385: 810-813.
  • Wilmut, I., Bai, y. y Taylor, J. 2015. Somatic cell nuclear transfer: origins, the present position and future opportunities. Philosophical transactions of the Royal Society of London Series B, Biological sciences 370: 20140366.
  • Yamanaka, S. y Blau, H.M. 2010. Nuclear reprogramming to a pluripotent state by three approaches. Nature 465: 704-712.