Una Revisión Sistemática de Métodos para Localizar Automáticamente Objetos en Imágenes

  1. Chaves, Deisy
  2. Saikia, Surajit
  3. Fernández-Robles, Laura
  4. Alegre, Enrique
  5. Trujillo, Maria
Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Año de publicación: 2018

Volumen: 15

Número: 3

Páginas: 231-242

Tipo: Artículo

DOI: 10.4995/RIAI.2018.10229 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista iberoamericana de automática e informática industrial ( RIAI )

Resumen

Actualmente, muchas aplicaciones requieren localizar de forma precisa los objetos que aparecen en una imagen, para su posterior procesamiento. Este es el caso de la inspección visual en la industria, los sistemas de diagnóstico clínico asistido por computador, la detección de obstáculos en vehículos o en robots, entre otros. Sin embargo, diversos factores como la calidad de la imagen y la apariencia de los objetos a detectar, dificultan la localización automática. En este artículo realizamos una revisión sistemática de los principales métodos utilizados para localizar objetos, considerando desde los métodos basados en ventanas deslizantes, como el detector propuesto por Viola y Jones, hasta los métodos actuales que usan redes de aprendizaje profundo, tales como Faster-RCNNo Mask-RCNN. Para cada propuesta, describimos los detalles relevantes, considerando sus ventajas y desventajas, así como sus aplicaciones en diversas áreas. El artículo pretende proporcionar una revisión ordenada y condensada del estado del arte de estas técnicas, su utilidad y sus implementaciones a fin de facilitar su conocimiento y uso por cualquier investigador que requiera localizar objetos en imágenes digitales. Concluimos este trabajo resumiendo las ideas presentadas y discutiendo líneas de trabajo futuro.

Referencias bibliográficas

  • Akselrod-Ballin, A., Karlinsky, L., Alpert, S., Hasoul, S., Ben-Ari, R., Barkan, E., 2016. A region based convolutional network for tumor detection and classification in breast mammography. In: Deep Learning and Data Labe-ling for Medical Applications. pp. 197–205.
  • Alexe, B., Deselaers, T., Ferrari, V., 2010. What is an object? In: CVPR. pp.73–80.
  • Ammour, N., Alhichri, H., Bazi, Y., Benjdira, B., Alajlan, N., Zuair, M., 2017.Deep learning approach for car detection in uav imagery. Remote Sens. 9 (4). DOI:10.3390/rs9040312
  • Boser, B. E., Guyon, I. M., Vapnik, V. N., 1992. A training algorithm for opti-mal margin classifiers. In: COLT. pp. 144–152.
  • Brazil, G., Yin, X., Liu, X., 2017. Illuminating pedestrians via simultaneous detection & segmentation. CoRR abs/1706.08564.
  • Cai, Z., Fan, Q., Feris, R. S., Vasconcelos, N., 2016. A unified multi-scale deep convolutional neural network for fast object detection. CoRRabs/1607.07155.
  • Cao, X., Gong, G., Liu, M.,Qi, J., 2016. Foreign object debris detection on air-field pavement using region based convolution neural network. In: DICTA. pp. 1–6. DOI:10.1109/DICTA.2016.7797045
  • Cao, X., Wang, P., Meng, C., Bai, X., Gong, G., Liu, M., Qi, J., 2018. Region based cnn for foreign object debris detection on airfield pavement. Sensors18 (3). DOI:10.3390/s18030737
  • Chen, J., Liu, Z., Wang, H., Núñez, A., Han, Z., 2018. Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network. IEEE T Instrum Meas 67 (2), 257–269. DOI:10.1109/TIM.2017.2775345
  • Cireʂan, D. C., Giusti, A., Gambardella, L. M., Schmidhuber, J., 2013. Mitosis detection in breast cancer histology images with deep neural networks. In: MICCAI. pp. 411–418.
  • Coifman, B., McCord, M., Mishalani, R. G., Iswalt, M., Ji, Y., 2006. Roadway traffic monitoring from an unmanned aerial vehicle. IEE Proceedings - Intelligent Transport Systems 153 (1),11–20. DOI:10.1049/ip-its:20055014
  • Dai, J., Li, Y., He, K., Sun, J., 2016. R-FCN: object detection via region-based fully convolutional networks. CoRR abs/1605.06409.
  • Dalal, N., Triggs, B., June2005. Histograms of oriented gradients for human detection. In: CVPR. Vol. 1. pp. 886–893 vol. 1. DOI:10.1109/CVPR.2005.177
  • Deng, L., 2014. A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Transactions on Signal and Information Processing 3, e2.
  • Deng, L., Yu, D., 2014. Deep learning: Methods and applications. Foundations and Trends in Signal Processing 7 (3-4), 197–387.
  • Dollár, P., Tu, Z., Perona, P., Belongie, S. J., 2009. Integral channel features. In: BMVC. pp. 1–11.
  • Dollar, P., Zitnick, L., 2013. Structured forests for fast edge detection. In: ICCV. pp. 1841–1848.
  • Donoser, M., Bischof, H., 2006. Efficient maximally stable extremal region (mser) tracking. In: CVPR. pp. 553–560. DOI:10.1109/CVPR.2006.107
  • Du, X., El-Khamy, M., Lee, J., Davis, L., 2017. Fused dnn: A deep neural net-work fusion approach to fast and robust pedestrian detection. In: WACV. pp.953–961. DOI:10.1109/WACV.2017.111
  • Dženan, Z., Aleš, V., Jan, E., Daniel, H., Christopher, N., Andreas, K., 2014. Robust detection and segmentation for diagnosis of vertebral diseases using routine mr images. Computer Graphics Forum 33 (6), 190–204. DOI:10.1111/cgf.12343
  • Felzenszwalb, P. F., Girshick, R. B., McAllester, D., Ramanan, D., 2010. Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32 (9), 1627–1645. DOI:10.1109/TPAMI.2009.167
  • Felzenszwalb, P. F., Huttenlocher, D. P., 2004. Efficient graph-based image segmentation. IJCV 59 (2), 167–181. DOI:10.1023/B:VISI.0000022288.19776.77
  • Ferguson, M., Ak, R., Lee, Y. T. T., Law, K. H., 2017. Automatic localization of casting defects with convolutional neural networks. In: IEEE International Conference on Big Data. pp. 1726–1735. DOI:10.1109/BigData.2017.8258115
  • Fernández-Robles, L., Azzopardi, G., Alegre, E., Petkov, N., 2017a. Machine-vision-based identification of broken inserts in edge profile milling heads. Robot Comput Integr Manuf 44, 276 – 283. DOI:https://doi.org/10.1016/j.rcim.2016.10.004
  • Fernández-Robles, L., Azzopardi, G., Alegre, E., Petkov, N., Castejón-Limas ,M., 2017b. Identification of milling inserts in situ based on a versatile machine vision system. JMSY 45, 48 – 57. DOI: https://doi.org/10.1016/j.jmsy.2017.08.002
  • Freund, Y., Schapire, R. E., 1999. A short introduction to boosting. In: IJCAI. pp. 1401–1406.
  • García-Ordás, M. T., Alegre, E., González-Castro, V., Alaiz-Rodríguez, R.,2017. A computer vision approach to analyze and classify tool wear level in milling processes using shape descriptors and machine learning techniques. Int J Adv Manuf Technol 90 (5), 1947–1961. DOI:10.1007/s00170-016-9541-0
  • García-Olalla, O., Alegre, E., Fernández-Robles, L., Fidalgo, E., Saikia, S., 2018. Textile retrieval based on image content from cdc and webcam cameras in indoor environments. Sensors 18 (5). DOI:10.3390/s18051329
  • Garnett, N., Silberstein, S., Oron, S., Fetaya, E., Verner, U., Ayash, A., Goldner,V., Cohen, R., Horn, K., Levi, D., 2017. Real-time category-based and general obstacle detection for autonomous driving. In: ICCVW. pp. 198–205. DOI:10.1109/ICCVW.2017.32
  • Girshick, R. B., 2015. Fast R-CNN. CoRR abs/1504.08083.
  • Girshick, R. B., Donahue, J., Darrell, T., Malik, J., 2013. Rich feature hierarchies for accurate object detection and semantic segmentation. CoRRabs/1311.2524.
  • He, B., Xiao, D., Hu, Q., Jia, F., 2018. Automatic magnetic resonance image prostate segmentation based on adaptive feature learning probability boos-ting tree initialization and cnn-asm refinement. IEEE Access 6, 2005–2015.
  • He, K., Gkioxari, G., Doll ́ar, P., Girshick, R. B., 2017. Mask R-CNN. CoRRabs/1703.06870.
  • He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: CVPR. pp. 770–778.
  • Heo, Y. J., Lee, D., Kang, J., Lee, K., Chung, W. K., 2017. Real-time Image Processing for Microscopy-based Label-free Imaging Flow Cytometry in a Microfluidic Chip. Scientific Reports 7 (1), 11651. DOI:10.1038/s41598-017-11534-0
  • Hosang, J., Benenson, R., Doll ́ar, P., Schiele, B., 2016. What makes for effective detection proposals? IEEE Trans. Pattern Anal. Mach. Intell. 38 (4),814–830. DOI:10.1109/TPAMI.2015.2465908
  • Jiamin, L., David, W., Le, L., Zhuoshi, W., Lauren, K., B., T. E., Berkman,S., A., P. N., M., S. R., 2017. Detection and diagnosis of colitis on computed tomography using deep convolutional neural networks. Medical Physics44 (9), 4630–4642. DOI:10.1002/mp.12399
  • Jung, F., Kirschner, M., Wesarg, S., 2013. A generic approach to organ detection using 3d haar-like features. In: Bildverarbeitung für die Medizin 2013.pp. 320–325.
  • Kisilev, P., Sason, E., Barkan, E., Hashoul, S., 2016. Medical image description nusing multi-task-loss cnn. In: Deep Learning and Data Labeling for Medical Applications. pp. 121–129.
  • Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. Imagenet classification with deep convolutional neural networks. In: Adv Neural Inf Process Syst. pp. 1097–1105.
  • Lampert, C. H., Blaschko, M. B., Hofmann, T., 2008. Beyond sliding windows: Object localization by efficient subwindow search. In: CVPR. pp. 1–8. DOI:10.1109/CVPR.2008.4587586
  • Lecun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444.
  • Lee, C. J., Tseng, T. H., Huang, B. J., Jun-Weihsieh, Tsai, C. M., 2015. Obstacle detection and avoidance via cascade classifier for wheeled mobile robot. In: ICMLC. Vol. 1. pp. 403–407. DOI:10.1109/ICMLC.2015.7340955
  • Lee, J., Wang, J., Crandall, D., Šabanovic, S., Fox, G., 2017. Real-time, cloud-based object detection for unmanned aerial vehicles. In: IRC. pp. 36–43. DOI:10.1109/IRC.2017.77
  • Levi, D., Garnett, N., Fetaya, E., September 2015a. Stixelnet: A deep convolutional network for obstacle detection and road segmentation. In: BMVC. pp. 109.1–109.12. DOI:10.5244/C.29.109
  • Levi, D., Garnett, N., Fetaya, E., 2015b. Stixelnet: A deep convolutional network for obstacle detection and road segmentation. In: BMVC. pp. 109.1–109.12. DOI:10.5244/C.29.109
  • Li, J., Liang, X., Shen, S., Xu, T., Feng, J., Yan, S., 2018. Scale-aware fast r-cnn for pedestrian detection. IEEE Trans Multimedia 20 (4), 985–996. DOI:10.1109/TMM.2017.2759508
  • Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A. C.,2016. Ssd: Single shot multibox detector. In: ECCV. pp. 21–37.
  • Luo, S., Lu, H., Xiao, J., Yu, Q., Zheng, Z., 2017. Robot detection and localization based on deep learning. In: CAC. pp. 7091–7095.
  • Ma, Y., Jiang, Z., Zhang, H., Xie, F., Zheng, Y., Shi, H., 2017. Proposing regions from histopathological whole slide image for retrieval using selective search. In: ISBI. pp. 156–159. DOI:10.1109/ISBI.2017.7950491
  • Mery, D., Rio, V., Zscherpel, U., Mondrag ́on, G., Lillo, I., Zuccar, I., Lobel,H., Carrasco, M., 2015. Gdxray: The database of x-ray images for nondestructive testing. Journal of Nondestructive Evaluation 34 (4), 42. DOI:10.1007/s10921-015-0315-7
  • Park, J.-K., Kwon, B.-K., Park, J.-H., Kang, D.-J., 2016. Machine learning-based imaging system for surface defect inspection. IJPEM-GT 3 (3), 303–310. DOI:10.1007/s40684-016-0039-x
  • Redmon, J., Divvala, S. K., Girshick, R. B., Farhadi, A., 2015. You only look once: Unified, real-time object detection. CoRR abs/1506.02640.
  • Ren, S., He, K., Girshick, R. B., Sun, J., 2015. Faster R-CNN: towards real-time object detection with region proposal networks. CoRR abs/1506.01497.
  • Říha, K., Mašek, J., Burget, R., Beneš, R., Závodná, E., 2013. Novel method for localization of common carotid artery transverse section in ultrasound images using modified viola-jones detector. Ultrasound Med Biol 39 (10),1887 – 1902. DOI:10.1016/j.ultrasmedbio.2013.04.013
  • Sa, R., Owens, W., Wiegand, R., Studin, M., Capoferri, D., Barooha, K.,Greaux, A., Rattray, R., Hutton, A., Cintineo, J., Chaudhary, V., 2017. Intervertebral disc detection in x-ray images using faster r-cnn. In: EMBC. pp. 564–567. DOI:10.1109/EMBC.2017.8036887
  • Saikia, S., Fidalgo, E., Alegre, E., Fernández-Robles, L., 2017. Object detection for crime scene evidence analysis using deep learning. In: ICIAP. pp.14–24.
  • Sepúlveda, G. V., Torriti, M. T.,Calero, M. F., 2017. Sistema de detección de señales de tráfico para la localización de intersecciones viales y frenado anticipado. Revista Iberoamericana de Automática e Informática Industrial14 (2), 152–162. DOI:10.1016/j.riai.2016.09.010
  • Shah, V. R., Maru, S. V., Jhaveri, R. H., 2018. An obstacle detection scheme for vehicles in an intelligent transportation system. IJCNIS 8 (10), 23–28. DOI:10.5815/ijcnis.2016.10.03
  • Shi, Y., Li, Y., Wei, X., Zhou, Y., 2017. A faster-rcnn based chemical fiber paper tube defect detection method. In: International Conference on Enterprise Systems. pp. 173–177. DOI:10.1109/ES.2017.35
  • Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556.
  • Szegedy, C., Ioe, S., Vanhoucke, V., Alemi, A. A., 2017. Inception-v4, inception-resnet and the impact of residual connections on learning. In: AAAI. pp. 4278–4284.
  • Tang, T., Zhou, S., Deng, Z., Zou, H., Lei, L., 2017. Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining. Sensors 17 (2). DOI:10.3390/s17020336
  • Tek, F., 2013. Mitosis detection using generic features and an ensemble of cascade adaboosts. J Pathol Inform 4 (1), 12. DOI:10.4103/2153-3539.112697
  • Uijlings, J. R. R., van de Sande, K. E. A., Gevers, T., Smeulders, A. W. M. ,2013. Selective search for object recognition. IJCV 104 (2), 154–171.
  • Viola, P., Jones, M. J., May 2004. Robust real-time face detection. IJCV 57 (2), 137–154 .DOI:10.1023/B:VISI.0000013087.49260.fb
  • Wang, S., Cheng, J., Liu, H., Tang, M., 2018. Pcn: Part and context information for pedestrian detection with cnns. CoRR abs/1804.04483.
  • Xu, Y., Yu, G., Wang, Y., Ma, Y., 2017a. Car detection from low-altitude uav imagery with the faster r-cnn. JAT 2017. DOI:https://doi.org/10.1155/2017/2823617
  • Xu, Y., Yu, G., Wang, Y., Wu, X., Ma, Y., 2016. A hybrid vehicle detection method based on viola-jones and hog+svm from uav images. Sensors 16 (8). DOI:10.3390/s16081325
  • Xu, Y., Yu, G., Wu, X., Wang, Y., Ma, Y., 2017b. An enhanced viola-jones vehicle detection method from unmanned aerial vehicles imagery. IEEE trans Intell Transp Syst 18 (7), 1845–1856. DOI:10.1109/TITS.2016.2617202
  • Yang, S., Fang, B., Tang, W., Wu, X., Qian, J., Yang, W., 2017. Faster r-cnn based microscopic cell detection. In: SPAC. pp. 345–350. DOI:10.1109/SPAC.2017.8304302
  • Yi, X., Song, G., Derong, T., Dong, G., Liang, S., Yuqiong, W., 2018. Fast road obstacle detection method based on maximally stable extremal regions. IJARS 15 (1), 1–10. DOI:10.1177/1729881418759118
  • Zeiler, M. D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In: ECCV. pp. 818–833.
  • Zhang, L., Lin, L., Liang, X., He, K., 2016. Is faster r-cnn doing well for pedestrian detection? In: ECCV. pp. 443–457.
  • Zhong, J., Lei, T., Yao, G., 2017. Robust vehicle detection in aerial images based on cascaded convolutional neural networks. Sensors 17 (12). DOI:10.3390/s17122720
  • Zitnick, L., Dollar, P., 2014. Edge boxes: Locating object proposals from edges. In: ECCV. pp. 391–405.