Legumes’ contributions to genetic research, a historical perspective from mendelism up to massive sequencing

  1. Marcelino Pérez de la Vega 1
  1. 1 Universidad de León
    info

    Universidad de León

    León, España

    ROR https://ror.org/02tzt0b78

Revista:
Arbor: Ciencia, pensamiento y cultura

ISSN: 0210-1963

Año de publicación: 2016

Título del ejemplar: Las leguminosas en la agricultura del futuro

Volumen: 192

Número: 779

Tipo: Artículo

DOI: 10.3989/ARBOR.2016.779N3008 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Arbor: Ciencia, pensamiento y cultura

Resumen

Es conocido que Mendel escogió los guisantes como material para realizar los experimentos que son la piedra fundacional de la Genética. Pero es menos conocido que Mendel también experimentó con otras leguminosas con menos éxito, o que Darwin experimentó con leguminosas. Durante la primera década del siglo XX, los guisantes fueron el material predilecto para comprobar los resultados obtenidos por Mendel. Después, la Genética se desarrolló utilizando prioritariamente otros organismos eucariotas o microorganismos. Aun así, las leguminosas forman parte de los materiales en los que Vavilov se basó para desarrollar su Ley de las Series Homólogas en la Variación. Las leguminosas son el modelo para el estudio de las relaciones simbióticas planta-microorganismo que posibilitan la fijación de nitrógeno atmosférico. Esto las ha convertido en uno de los modelos bioló- gicos en la era de la genómica. En el último lustro se ha terminado la secuenciación de varios genomas de especies cultivadas de leguminosas y muchos otros lo serán en los próximos años. Como consecuencia de ello la cantidad de conocimientos teóricos y su aplicación a la mejora está aumentando exponencialmente.

Referencias bibliográficas

  • Allen, G. E. (2003). Mendel and modern genetics: the legacy for today. Endeavour, 27, pp. 63-68. http://dx.doi.org/10.1016/S0160-9327(03)00065-6
  • Anonymous. (1898). Pea-soup as a substitute for beef-tea. Science, 14, p. 264.
  • Armstead, I., Donnison, I., Aubry, S., Harper, J., Hörtensteiner, S., James, C., Mani, J., Moffet, M., Ougham, H., Roberts, L., Thomas, A., Weeden, N., Thomas, H. and King, I. (2007). Cross-species identification of Mendel's l locus. Science, 315, p. 73. http://dx.doi.org/10.1126/science.1132912
  • Bateson, W. (1909). Mendel's Principles of Heredity. New York: Cambridge University Press. Available from: archive.org/stream/mendelsprinciple00bate#
  • Bett, K., Ramsay, L., Sharpe, A. G., Cook, D. R., Penmetsa, R. V., Stonehouse, R., Wong, M., Chan, C. Vandenberg, A., VanDeynze, A., Coyne, C. J., McGee, R., Main, D., Dolezel, J., Edwards, D., Kaur, S., Udupa, S. M and Kumar, S. (2014). Lentil genome sequencing: establishing a comprehensive platform for molecular breeding. En: Book of Abstracts, 7th International Conference on Legume Genetics and Genomics (ICLGG VII), 7-11 July, Saskatoon, Canada, p. 19. PMid:19973580 PMCid:PMC2046986
  • Bhattacharyya, M, K., Smith, A. M., Ellis, T. H. N., Hedley, C. and Martin, C. (1990). The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell, 60, pp. 115-122. http://dx.doi.org/10.1016/0092-8674(90)90721-P
  • Correns, C. (1950). G. Mendel's law concerning the behavior of progeny of varietal hybrids [originally published as: Correns, C. (1900). G. Mendel's Regel über das Verhalten der Nachkommenschaft der Rassenbastarde. Berichte der Deutschen Botanischen Gesellschaft, 18, pp. 158-168]. Genetics, 35, pp. 33-41. Available from: http://www.esp.org/foundations/genetics/classical/holdings/c/cc-00.pdf PMid:14773780
  • Darwin, C. (1876). The Effects of Cross and Self-Fertilization in the Vegetable Kingdom. London: John Murray. Available from: http:// darwin-online.org.uk/converted/published/1881_Worms_ F1357/1876_CrossandSelfFertilisation_F1249/1876_CrossandSelfFertilisation_F1249.html / http://dx.doi.org/10.5962/bhl. title.110800
  • Den Herder, G. and Parniske, M. (2009). The unbearable naivety of legumes in simbiosis. Current Opinion in Plant Biology, 12, pp. 491–499. http://dx.doi.org/10.1016/j.pbi.2009.05.010 PMid:19632141
  • De Vries, H. (1950). Concerning the law of segregation of hybrids [originally published as: De Vries, H. (1900). Sur la loi de disjonction des hybrides. Comptes Rendus de l'Academie des Sciences (Paris), 130, pp. 845-847]. Genetics, 35, pp. 30-32. Available from: http://www.esp.org/foundations/genetics/classical/holdings/v/hdv-00.pdf PMid:14773779
  • East, E. M. (1910). A Mendelian interpretation of variation that is apparently continuous. American Naturalist, 44, pp. 65-82. http://dx.doi.org/10.1086/279117
  • East, E. M. (1916). Studies on size inheritance in Nicotiana. Genetics, 1, pp. 164-176. PMid:17245854 PMCid:PMC1193657
  • Ellis, T. H. N, Hofer, J. M. I., Timmerman-Vaughan, G. M., Coyne, C. J. and Hellens, R. P. (2011). Mendel, 150 years on. Trends in Plant Science, 16, pp. 590-596. http://dx.doi.org/10.1016/j.tplants.2011.06.006 PMid:21775188
  • Fairbanks, A. J. and Rytting, B. (2001). Mendelian controversies: A botanical and historical review. American Journal of Botany, 88, pp. 737-752. http://dx.doi.org/10.2307/2657027 PMid:11353700
  • Fisher, R. A. (1936). Has Mendel's work been rediscovered? Annals of Science, 1, pp. 115-137. http://dx.doi.org/10.1080/00033793600200111
  • Foucher, F., Morin, J., Courtiade, J., Cadioux, S., Ellis, N., Banfield, M J. and Rameau, C. (2003). DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. The Plant Cell, 15, pp. 2742–2754. http://dx.doi.org/10.1105/tpc.015701 PMid:14563931 PMCid:PMC280576
  • Franche, C., Lindström, K. and Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 321, pp. 35–59. http://dx.doi.org/10.1007/s11104-008-9833-8
  • Franklin, A., Edwards, A. W. F., Fairbanks, D. J., Hartl, D.L. and Seidenfeld, T. (2008). Ending the Mendel-Fisher Controversy. Pittsburgh: University of Pittsburgh Press.
  • Galton, D. (2009). Did Darwin read Mendel? QJM International Journal of Medicine, 102, pp. 587-589. http://dx.doi.org/10.1093/qjmed/hcp024 PMid:19286889
  • Heath, K. D., Burke, P. V. and Stinchcombe, J. R. (2012). Coevolutionary genetic variation in the legume-rhizobium transcriptome. Molecular Ecology, 21, pp. 4735–4747. http://dx.doi.org/10.1111/j.1365-294X.2012.05629.x PMid:22672103
  • Hellens, R. P., Moreau, C., Lin-Wang, K., Schwinn, K. E., Thomson. S. J., Fiers. M. W. E. J., Frew, J., Murray, S. R., Hofer, J. M. I., Jacobs, J. M. E., Davies, K. M., Allan, A. C., Bendahmane, A., Coyne, C. J., Timmerman-Vaughan, G. M. and Ellis, T. H. N. (2010). Identification of Mendel's white flower character. Plos One, 5, e13230. http://dx.doi.org/10.1371/journal.pone.0013230 PMid:20949001 PMCid:PMC2952588
  • Howard, J. C. (2009). Why didn't Darwin discover Mendel's laws? Journal of Biology, 8, p.15. http://dx.doi.org/10.1186/jbiol123 PMid:19291260 PMCid:PMC2687777
  • Keeble, F. and Pellew, C. (1910). The mode of inheritance of stature and of time of flowering in peas (Pisum sativum). Journal of Genetics, 1, pp. 47-56. http://dx.doi.org/10.1007/BF02981568
  • Jahn, I., Lother, R. and Senglaub, K. (1990). Historia de la Biología. Teorías, métodos, instituciones y biografías breves. Barcelona: Labor.
  • Jain, M., Misra. G., Patel, R. K., Priya, P., Jahwar, S., Kahn, A. W., Shah, N., Singh, V. K., Garg, R., Jeena, G., Yadav, M., Kant, C., Sharma, P., Yadav, G. Bhatia, S., Tyagi, A. K. and Chattopadhyay, D. (2013). A draft genome sequence of the pulse crop chickpea (Cicer arietinum L). The Plant Journal, 74, pp. 715–729. http://dx.doi.org/10.1111/tpj.12173 PMid:23489434
  • Johannsen, W. (1909). Elemente der exakten Erblichkeitslehre. Jena: Fischer.
  • Lester, D. R., Ross, J. J., Davies P. J. and Reid, J. B. (1997). Mendel's stem length gene (Le) encodes gibberellin 3?-hydroxylase. Plant Cell, 9, pp. 1435–1443. PMid:9286112 PMCid:PMC157009
  • Markmann, K. and Parniske, M. (2009). Evolution of root endosymbiosis with bacteria: how novel are nodules? Trends in Plant Science, 14, pp. 77-86. http://dx.doi.org/10.1016/j.tplants.2008.11.009 PMid:19167260
  • Martin, D. N., Proebsting, W. M. and Hedden, P. (1997). Mendel's dwarfing gene: cDNAs from the Le alleles and function of the expressed proteins. Proceedings of the National Academy of Sciences USA, 94, pp. 8907–8911. http://dx.doi.org/10.1073/pnas.94.16.8907
  • Mayr, E. (1982). The Growth of Biological Thought. Diversity, Evolution, and Inheritance. Cambridge, Massachusetts: Belknap Press-Harvard University Press.
  • Mendel G. (1866). Versuche über Pflanzen-Hybriden. Verhandlungen des Naturforschenden Vereines in Brünn, IV, pp. 67–112. http://dx.doi.org/10.5962/bhl.title.61004
  • Nilsson-Ehle, H. (1908). Einige Ergebnisse von Kreuzungen bei Hafer und Weizen. Botaniska Notiser, 6, pp. 257–294.
  • Nilsson-Ehle, H. (1911). Mendélisme et acclimatation. En: IVe Conférence International Génétique, Paris, pp. 1–22.
  • Osborne, T. B. and Harris, I. F. (1907). The proteins of the pea (Pisum sativum). Journal of Biological Chemistry, 3, pp. 213-217.
  • Osborne, T. B. and Heyl, F. W. (1908a). Hydrolysis of vicilin from the pea (Pisum satibum) (sic). Journal of Biological Chemistry, 5, pp. 187-195.
  • Osborne, T. B. and Heyl, F. W. (1908b). Hydrolysis of legumelin from the pea (Pisum satibum) (sic). Journal of Biological Chemistry, 5, pp. 197-205.
  • Reid, J. B. and Ross, J. J. (2011). Mendel's genes: Toward a full molecular characterization. Genetics, 189, pp. 3-10. http://dx.doi.org/10.1534/genetics.111.132118 PMid:21908742 PMCid:PMC3176118
  • Roberts, H. F. (1919) The contribution of Carl Friedrich von Gartner to the history of plant hybridization. The American Naturalist, 53, pp. 431-445. http://dx.doi.org/10.1086/279723
  • Roberts, H. F. (1929). Plant Hybridization before Mendel. New York: Princeton University Press. http://dx.doi.org/10.5962/bhl.title.4517
  • Sax, K. (1923). The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics, 8, pp. 552-560. PMid:17246026 PMCid:PMC1200765
  • Smykal, P. (2014). Pea (Pisum sativum L.) in Biology prior and after Mendel's discovery. Czech Journal of Genetic and Breeding, 50, pp. 52-64.
  • Stern, C. and Sherwood, E. R. (1966). The Origin of Genetics. San Francisco: Freeman [Spanish translation: El origen de la Genética. Madrid: Alhambra, 1973].
  • Tschermak, E. (1950). Concerning artificial crossing in Pisum sativum [originally published as: Tschermak, E. (1900). Über Künstliche Kreuzung bei Pisum sativum. Berichte der Deutsche Botanischen Gesellschaft 18, pp. 232-239]. Genetics, 35, pp. 42-47 (1950). Available from: http://www.esp.org/foundations/genetics/classical/holdings/t/et-00.pdf PMid:14773781
  • Varshney, R. K., Song, C., Saxena, R. K., Azam, S., Yu, S., Sharpe, A. G., Cannon, S., Baek, J., Rose, B. D., Tar'an, B., Millan, T., Zhang, X., Ramsay, L. D., Iwata, A., Wang, Y., Nelson, W., Farmer, A. D., Gaur, P. M., Soderlung, C., Penmetsa, R. V., Xu, C., Bharti, A. K., He, W. Winter, P. Zhao, S. et al. (2013). Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 31, pp. 240–246. http://dx.doi.org/10.1038/nbt.2491 PMid:23354103
  • Varshney, R. K., Chen, W., Li, Y., Bharti, A. K., Saxena, R. K., Schlueter, J. A., Donoghue, M. T. A., Azam, S., Fan, G., Whaley, A. M., Farmer, A. D., Sheridan, J., Iwata, A., Tuteja, R., Penmetsa, R. V., Wu, W., Upadhyaya H. D., Yang, S.-P., Shah, T., Saxena, K. B., Michael, T., McCombie, W. R., Yang, B., Zhang, G., Yang, H. et al. (2012) Draft genome sequence of pigeon pea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nature Biotechnology, 30, pp. 83–89. http://dx.doi.org/10.1038/nbt.2022 PMid:22057054
  • Vavilov, N. I. (1922). The law of homologous series in variation. Journal of Genetics, 12, pp. 47-78. http://dx.doi.org/10.1007/BF02983073
  • Weldon, W. F. R. (1902). Mendel's laws of alternative inheritance in peas. Biometrika, 1, pp. 228-254. Available from: http://www. esp.org/foundations/genetics/classical/holdings/w/wfrw-02. pdf / http://dx.doi.org/10.1093/biomet/1.2.228