Estimación de biomasa en herbáceas a partir de datos hiperespectrales, regresión PLS y la transformación continuum removal
- 1 GEOINCA-202. Universidad de León (Ponferrada)
ISSN: 1133-0953
Año de publicación: 2014
Número: 42
Páginas: 49-60
Tipo: Artículo
Otras publicaciones en: Revista de teledetección: Revista de la Asociación Española de Teledetección
Resumen
El objetivo del estudio fue comparar los resultados de dos métodos para la estimación de la biomasa aérea a partir de datos de espectroradiometría de campo: (i) regresión por mínimos cuadrados parciales (Partial Least Squares Regression, PLSR) y (ii) regresión lineal utilizando los índices Profundidad del Mínimo (Maximum Band Depth, MBD) y Área Sobre el Mínimo (Area Over the Minimum, AOM) como descriptores. En ambos casos se llevó a cabo una previa transformación de los espectros mediante Continuum Removal (CR). Como los resultados empleando PLS (R2=0,920, RMSE=3,622 g/m2) fueron muy similares a los obtenidos con los índices (para AOM: R2=0,915, RMSE=3,615 g/m2), recomendamos los índices derivados del CR puesto que su interpretación es más sencilla que la del PLSR.
Referencias bibliográficas
- Adjorlolo, C., Cho, M.A., Mutanga, O., Ismail, R. classification of C3 and C4 grass species, using wavelengths of known absorption features. Journal of Applied Remote Sensing, 6(1), 1-15. http://dx.doi.org/10.1117/1.JRS.6.063560
- Atzberger, C., Guérif, M., Baret, F., Werner, W. 2010. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Computers and Electronics in Agriculture, 73(2), 165-173. http://dx.doi.org/10.1016/j.compag.2010.05.006
- Axelsson, C., Skidmore, A.K., Schlerf, M., Fauzi, A., Verhoef, W. 2013. Hyperspectral analysis of mangrove foliar chemistry using PLSR and support vector regression. International Journal of Remote Sensing, 34(5), 1724-1743. http://dx.doi.org/10.1080/01431161.2012.725958
- Barrio, A.M., Balboa, M.M.A., Castedo, D.F., Diéguez, A.U., Álvarez, G.J.A. 2006. An ecoregional model for estimating volume, biomass and carbon pools in maritime pine stands in Galicia (northwestern Spain). Forest Ecology and Management, 223(1-3), 24-34. http://dx.doi.org/10.1016/j.foreco.2005.10.073
- Cho, M.A., Skidmore, A.K., Corsi, F., Van Wieren, S.E., Sobhan, I. 2007. Estimation of green grass - herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. International Journal of Applied Earth Observation and Geoinformation, 9(4), 414-424. http://dx.doi.org/10.1016/j.jag.2007.02.001
- Chuvieco, E., Huete, A. 2010. Fundamentals of satellite remote sensing. Boca Raton (FL), CRC Press. Boca Raton (USA), 302-310.
- Clevers, J.G.P.W., Kooistra, L., Schaepman, M.E. 2008. Using spectral information from the NIR water absorption features for the retrieval of canopy water content. International Journal of Applied Earth Observation and Geoinformation, 10(3), 388-397. http://dx.doi.org/10.1016/j.jag.2008.03.003
- Curran, P.J., Dungan, J.L., Peterson, D.L. 2001. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry testing the Kokaly and Clark methodologies. Remote Sensing of Environment, 76(3), 349-359. http://dx.doi.org/10.1016/S0034-4257(01)00182-1
- De Jong, S.M. 1994. Applications of Reflective Remote Sensing for Land Degradation Studies in a Mediterranean, Environment. (Netherlands Geographical Studies (NGS)). Ph.D. Dissertation, Utrecht University, Utrecht, The Netherlands.
- Dunn, B.W., Beecher, H.G., Batten, G.D., Ciavarella, S. 2002. The potential of near-infrared reflectance spectroscopy for soil analysis, a case study from the Riverine Plain of south-eastern Australia. Australian Journal of Experimental Agriculture, 42(5), 607-614. http://dx.doi.org/10.1071/EA01172
- Gao, X., Huete, A.R., Ni, W., Miura, T. 2000. Optical biophysical relationships of vegetation spectra without background contamination. Remote Sensing of Environment, 74(3), 609-620. http://dx.doi.org/10.1016/S0034-4257(00)00150-4
- Geladi, P., Kowalski, B.R. 1986. Partial leastsquares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. http://dx.doi.org/10.1016/0003-2670(86)80028-9
- Grossman, Y.L. Ustin, S.L., Jacquemoud, S., Sanderson, E.W., Schmuck, G.; Verdebout, J., 1996. Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data. Remote Sensing of Environment, 56(3), 182-193. http://dx.doi.org/10.1016/0034-4257(95)00235-9
- Huang, Z., Turner, B.J., Dury, S.J., Wallis, I.R., Foley, W.J. 2004. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sensing of Environment, 93(1-2), 18-29. http://dx.doi.org/10.1016/j.rse.2004.06.008
- Kokaly, R.F., Clark, R.N. 1999. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 67(3), 267-287. http://dx.doi.org/10.1016/S0034-4257(98)00084-4
- Kooistra, L., Wanders, J., Epema, G.F., Leuven, R.S.E.W., Wehrens, R., Buydens, L.M.C. 2003. The potential of field spectroscopy for the assessment of sediment properties in river floodplains. Analytica Chimica Acta, 484(2), 189-200. http://dx.doi.org/10.1016/S0003-2670(03)00331-3
- Kooistra, L., Suárez Barranco, M.D., van Dobben, H., Schaepman, M.E. 2006. Regional Scale Monitoring of Vegetation Biomass in river floodplains using Imaging Spectroscopy and Ecological Modeling. En: Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Denver, CO, USA, 31 July-4 August 2006, 124-127.
- Marabel, M., Álvarez, F. 2013. Spectroscopic Determination of Aboveground Biomass in Grasslands Using Spectral Transformations, Support Vector Machine and Partial Least Squares Regression. Sensors, 13(8), 10027-10051. http://dx.doi.org/10.3390/s130810027
- Mutanga, O., Skidmore, A.K. 2004. Narrow band vegetation indices overcome the saturation problem in biomass estimation. International Journal of Remote Sensing, 25(19), 3999-4014. http://dx.doi.org/10.1080/01431160310001654923
- Mutanga, O., Ismail R. 2010. Variation in foliar water content and hyperspectral reflectance of Pinus patula trees infested by Sirex noctilio. Southern Forests, 72 (1), 1-7. http://dx.doi.org/10.2989/2070 2620.2010.481073
- Nitsch, B.B., Meyer, G.E., Mortensen, D.A. 1991. Visible near-infrared plant, soil and crop residue reflectivity for weed sensor design. ASAE, Paper No. 91-3006. ASAE, St. Joseph, MI, USA.
- Pordesimo, L.O., Edens, W.C., Sokhansanj, S. 2004. Distribution of aboveground biomass in corn stover. Biomass and Bioenergy, 26(4), 337-343. http://dx.doi.org/10.1016/S0961-9534(03)00124-7
- Pu, R., Ge, S., Kelly, N.M., Gong, P. 2003. Spectral absorption features as indicators of water status in coast live oak (Quercus agrifolia) leaves. International Journal of Remote Sensing, 24(9), 1799-1810.
- http://dx.doi.org/10.1080/01431160210155965
- Schlerf, M., Atzberger, C., Hill, J. 2005. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sensing of Environment, 95(2), 177-194. http://dx.doi.org/10.1016/j.rse.2004.12.016
- Smith, G.M., Currran, P.J. 1996. The signal-to-noise ratio (SNR) required for the estimation of foliar biochemical concentrations. International Journal of Remote Sensing, 17(5), 1031-1058. http://dx.doi.org/10.1080/01431169608949062
- Vasques, G.M., Grunwald, S., Sickman, J.O. 2008. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma, 146(1-2), 14-25. http://dx.doi.org/10.1016/j.geoderma.2008.04.007
- Williams, P.C., Norris, K.H. 1987. Near-Infrared Technology in the Agricultural and Food Industries. St. Paul, MN, USA: American Association of Cereal Chemists, 143-167