El uso de fotocélulas de haz simple y doble para medir la velocidad en carreras®

  1. García López, Juan
  2. Morante Rábago, Juan Carlos
  3. Ogueta-Alday, Ana
  4. González Lázaro, Javier
  5. Rodríguez Marroyo, José Antonio
  6. Villa Vicente, José G.
Revista:
RICYDE. Revista Internacional de Ciencias del Deporte

ISSN: 1885-3137

Año de publicación: 2012

Título del ejemplar: Biomecánica

Volumen: 8

Número: 30

Páginas: 324-333

Tipo: Artículo

DOI: 10.5232/RICYDE2012.03003 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: RICYDE. Revista Internacional de Ciencias del Deporte

Resumen

El objetivo del estudio fue analizar la influencia de la tecnología de las fotocélulas en el registro de tiempo y su fiabilidad durante de carreras de velocidad de corta distancia. Participaron 25 estudiantes (20.5±0.5 años; 1.78±0.02 m; 77.5±1.8 kg) que fueron evaluados en 3 días (2 de familiarización y 1 de test). Se registraron aleatoriamente 3 carreras de aceleración y 3 velocidad lanzada, cronometradas simultáneamente a los 5, 10 y 15 m por dos sistemas de fotocélulas DSD Laser System®: haz simple y doble haz. El tipo de fotocélulas utilizadas influyó en el tiempo de carrera (F=11.92 y p<0.001) y su fiabilidad (F=14.52 y p<0.001). En la carrera de aceleración el haz simple sobrestimó ~0.02 s el tiempo respecto al doble haz (F=42.95 y p<0.001), obteniéndose registros fiables (CCI > 0.80) a los 10 y 5 m, respectivamente. En la carrera lanzada ambos sistemas midieron prácticamente igual (diferencias de ~0.005 s), obteniendo registros fiables a los 15 y 10 m, respectivamente. En conclusión, en carreras de aceleración la distancia mínima a registrar con haz simple debe ser de 10 m, y de 5 m con haz doble, mientras que en carreras lanzadas deberían utilizarse unas distancias mínimas de 15 y 10 m, respectivamente. Futuros estudios deberían analizar la distancia óptima a la primera fotocélula en las carreras de aceleración, para aumentar la fiabilidad de la medición y facilitar la comparación entre registros de diferentes estudios.

Referencias bibliográficas

  • Alcaraz, P.E.; Palao, J.M.; Elvira, J.L.; Linthorne, N.P. (2008). Effects of three types of resisted sprint training devices on the kinematics of sprinting at maximum velocity. Journal of Strength and Conditioning Research, 22(3): 890-897.
  • Atkinson, G.; Nevill, A. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sportsmedicine. Sports Medicine, 26(4): 217-238.
  • Cronin, J.B.; Green, J.P.; Levin, M.E.; Brughelli, G.T.; Frost, D.M. (2007). Effect of starting stance on initial spring performance. Journal of Strength and Conditioning Research, 21(3): 990-992.
  • Cronin, J.B.; Templeton, R.L. (2008). Timing light height affects sprint times. Journal of Strength and Conditioning Research, 22(1): 318-320.
  • Currell, K.; Jeukendrup, A.E. (2008). Validity, reliability and sensitivity of measures of sporting performance. Sports Medicine, 38(4): 297-316.
  • Duthie, G.M.; Pyne, D.B.; Ross, A.A.; Livingstone, S.G.; Hooper, S.L. (2006). The reliability of ten-meter sprint time using different starting techniques. Journal of Strength and Conditioning Research, 20(2): 246-251.
  • Ebben, W.P.; Davies, J.A.; Clewien, R.W. (2008). Effect of the degree of hill slope on acute downhill running velocity and acceleration. Journal of Strength and Conditioning Research, 22(3): 898-902.
  • Frost, D.M.; Cronin, J.B.; Levin, G. (2008). Stepping backward can improve sprint performance over short distances. Journal of Strength and Conditioning Research, 22(3): 918-922.
  • Gabbett, T.J.; Kelly, J.N.; Sheppard, J.M. (2008). Speed, change of direction speed, and reactive agility of rugby league players. Journal of Strength and Conditioning Research, 22(1): 174-181.
  • García-López, J.; González, J.; Rodríguez, J. A.; Morante, J. C.; Villa, J. G. (2002). Validación y aplicación de un nuevo sistema de fotocélulas: DSD Láser System. En Llibre de les actes del cinqué congres de ciènces de l'esport, l'educació física i la recreació de l'INEFC-Lleida (pp. 583-595). Lleida: INEF de Catalunya, Centre de Lleida.
  • García-López, J.; Peleteiro, J.; Rodríguez-Marroyo, J.A.; Morante J.C.; Herrero, J.A.; Villa, J.G. (2005). The validation of a new method that measures contact and flight times during vertical jump. International Journal of Sports Medicine, 26(4): 294-302.
  • Izquierdo, M.; Ibañez, J.; González-Badillo, J.J.; Gorostiaga, E.M. (2002). Effects of creatine supplementation on muscle power, endurance, and sprint performance. Medicine and Science in Sports and Exercise. 34(2): 332-343.
  • Kramer, M.S.; Feinstein, A.R. (1981). Clinical biostatistics LIV. The biostatistics of concordance. Clinical Pharmacology and Therapeutics, 29(1):111-123. 1981.
  • Mendoza, L.; Schöllhorn, W. (1993) Training of the start technique with biomechanical feedback. Journal of Sports Sciencies, 11(1): 25-29.
  • Mero, A.; Komi, P.V. (1985). Effects of supramaximal velocity on biomechanical variables in sprinting. International Journal of Sports Biomechanics, 1(3): 240-252
  • Mirkov, D.M.; Nedeljkovic, A.; Kukolj, M.; Ugarkovic, D.; Jaric, S. (2008). Evaluation of reliability of soccer-specific field tests. Journal of Strength and Conditioning Research, 22(4): 1046-1050.
  • Morin, J.B.; Sève, P. (2011). Sprint running performance: comparison between treadmill and field conditions. European Journal of Applied Physiology, 111(8): 1695-1703.
  • Mujika, I.; Padilla, S.; Ibañez, J.; Izquierdo, M.; Gorostiaga, E. (2000). Creatine supplementation and sprint performance in soccer players. Medicine and Science in Sports and Exercise, 32(2): 518-525.
  • Newton, R.U.; Laursen, P.B.; Young, W. (2008). Clinical Exercise Testing and Assessment of Athletes. En M. Schwellnus (Ed.). Olympic Textbook of Medicine in Sport. Oxford, UK: Blackwell Publishing Ltd.
  • Paradisis, G.P.; Cooke, C.B. (2006). The effects of sprint running training on sloping surfaces. Journal of Strength and Conditioning Research, 20(4): 767-777.
  • Williams, J.R. (2008). The Declaration of Helsinki and public health. Bulletin of the World Health Organization, 86(8):650-652.
  • Yeadon, M.R.; Kato, T.; Kerwin, D.G. (1999). Measuring running speed using photocells. 17(3): 249-257.
  • Zatsiorsky, V.; Fortney, V.L. (1993). Sport biomechanics 2000. Journal of Sports Sciences, 11(4): 279-283.