El entrenamiento de alta intensidad, una herramietna para la mejora del rendimiento en los deportes de perfil intermitente

  1. Fernández Fernández, Jaime
Revista:
RED: Revista de entrenamiento deportivo = Journal of Sports Training

ISSN: 1133-0619

Año de publicación: 2012

Tomo: 26

Número: 2

Páginas: 5-14

Tipo: Artículo

Otras publicaciones en: RED: Revista de entrenamiento deportivo = Journal of Sports Training

Resumen

El ejercicio intermitente de alta intensidad es una de las formas de actividad más frecuente en la mayor parte de los deportes de equipo (fútbol, rugby) y en algunos individuales (tenis o bádminton), también definidos de una forma más genérica como deportes intermitentes. Parece que está claro que un aspecto fundamental a desarrollar en estos deportistas es su habilidad para ejecutar esfuerzos de alta intensidad de manera repetida. Para ser capaces de eso los deportistas van a necesitar de un alto nivel de condición física aeróbica así como de una alta capacidad para repetir sprints (“repeated sprint ability”, RSA), que les permita ejecutar esos esfuerzos a intensidades mas alta y recuperarse eficientemente entre esfuerzos. En el siguiente artículo se revisan los efectos del entrenamiento de alta intensidad tanto a nivel fisiológico como de rendimiento, en deportes intermitentes. Además, se intenta proporcionar una visión práctica del uso de los distintos tipos de entrenamiento de alta intensidad que se pueden implementar dentro del programa de entrenamiento de deporte intermitente.

Referencias bibliográficas

  • 1. Abdelkrim NB, El Fazaa S, y El Ati J. (2007). Time-motion analysis and physiological data of elite under-19-year-old basketball players during competition. Br J Sports Med; 41(2): 69-75.
  • 2. McInnes SE, Carlson JS, Jones CJ, et al. (1995). The physiological load imposed on basketball players during competition. J Sports Sci; 13(5): 387-97.
  • 3. Deutsch MU, Maw GJ, Jenkins D, et al. (1998). Heart rate, blood lactate and kinematic data of elite colts (under-19) rugby union players during competition. J Sports Sci; 16:561-70.
  • 4. Duthie G, Pyne D, y Hooper S. (2005). Time motion analysis of 2001 and 2002 super 12 rugby. J Sports Sci; 23 (5): 523-30.
  • 5. Bangsbo J, Norregaard L, y Thorso F. (1991). Activity profile of competition soccer. Can J Sport Sci; 16(2): 110-6.
  • 6. Bloomfield J, Polman R, y O’Donoghue P. (2007). Physical demands of different positions in FA premier league soccer.. J Sports Sci Med; 6: 63-70.
  • 7. Mohr M, Krustrup P, y Bangsbo J. (2003). Match performance of highstandard soccer players with special reference to development of fatigue. J Sports Sci; 21 (7): 519-28.
  • 8. Gabbett T, King T, Jenkins D. (2008). Applied physiology of rugby league. Sports Med; 38(2):119-38.
  • 9. Gabbett TJ. (2005). Science of rugby league football: a review. J Sports Sci; 23(9):961-76.
  • 10. Helgerud J, Engen LC, Wisloff U, et al. (2001). Aerobic endurance training improves soccer performance. Med Sci Sports Exerc; 33 (11): 1925-31.
  • 11. Bangsbo J, Mohr M, y Krustrup P. (2006). Physical and metabolic demands of training and match-play in the elite football player. Sports Sci; 24 (7): 665-74.
  • 12. Stone NM, y Kilding AE. (2009). Aerobic conditioning for team sport athletes. Sports Med; 39(8):615-42.
  • 13. Stone NM. (2007). Physiological responses to sport-specific aerobic interval training in highschool male basketball players. Tesis de Master; AUT University.
  • 14. Mohr M, Krustrup P, y Bangsbo J. (2005). 2005) Fatigue in soccer: a brief review. J Sports Sci; 23 (6): 593-9.
  • 15. Spencer M, Bishop D, Dawson, B, y Goodman, C. (2005). Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Med; 35(12):1025-44.
  • 16. Glaister M. (2005). Multiple sprint work: physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med; 35(9):757-77.
  • 17. Rampinini E, Impellizzeri FM, Castagna C, et al. (2007). Factors influencing physiological responses to small-sided soccer games. J Sports Sci; 25 (6): 659-66.
  • 18. Hamilton AL, Nevill ME, Brooks S, et al. (1991). Physiological responses to maximal intermittent exercise: differences between endurance-trained runners and games players. J Sports Sci; 9:371-82. 19.
  • 19. Dawson B, Fitzsimons M, Ward D. (1993). The relationship of repeated sprint ability to aerobic power and performance measures of anaerobic work capacity and power. Aust J Sci Med Sports; 25:88-93.
  • 20. Girard O, Mendez-Villanueva A, Bishop D. (2011). Repeatedsprint ability -part I: factors contributing to fatigue. Sports Med; 41(8):673-94.
  • 21. Bishop D, Girard O, Mendez-Villanueva A. (2011). Repeated-sprint ability -part II: recommendations for training. Sports Med; 41(9):741-56.
  • 22. Thomas A, Dawson B, y Goodman C. (2006). The yo-yo test: reliability and association with a 20-m shuttle run and VO2max. Int J Sports Physiol Perform; 1:137-149.
  • 23. Dupont G, Millet GP, Guinhouya C, y Berthoin, S. (2005). Relationship between oxygen uptake kinetics and performance in repeated running sprints. Eur J Appl Physiol; 95:27-34.
  • 24. Rampinini E, Sassi A, Azzalin A, Castagna C, y cols. (2010). Physiological determinants of Yo-Yo intermittent recovery tests in male soccer players. Eur J Appl Physiol; 108(2):401-9..
  • 25. Bishop D, Edge J, y Goodman C. (2004). Muscle buffer capacity and aerobic fitness are associated with repeated-sprint ability in women. Eur J Appl Physiol; 92(45):540-547.
  • 26. McMahon S, y Jenkins D. (2002). Factors affecting the rate of phosphocreatine resynthesis following intense exercise. Sports Med; 32: 761-84.
  • 27. McGawley K, y Bishop D. (2008). Anaerobic and aerobic contribution to two, 5 x 6-s repeated-sprint bouts. Coaching and Sport Science Journal: Book of Abstracts from the Verona-Ghirada Team- Sport Conference; 3(2):52.
  • 28. Bogdanis GC, Nevill ME, Boobis LH, et al. (1996). Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol; 80 (3): 876-84.
  • 29. Bangsbo J. (1994). 1994) Physiological demands of soccer. Ekblom B, editor. Football (soccer). London: Blackwell Scientific; 43-59.
  • 30. Krustrup P, Mohr M, Ellingsgaard H, et al. (2005). hysical demands during an elite female soccer game: importance of training status. Med Sci Sports Exerc; 37: 1242-8.
  • 31. Edwards AM, Clark N, Macfayden AM. (2003). Lactate and ventilatory thresholds reflect the training status of professional soccer players where maximum aerobic power is unchanged. Sports Sci Med; 2: 23-9.
  • 32. Bangsbo J, Lindquist F. (1992). Comparison of various exercise tests with endurance performance during soccer in professional players. Int J Sports Med; 13 (2): 125.
  • 33. Bishop D, Lawrence S, Spencer M. (2003). Predictors of repeated sprint ability in elite female hockey players. J Sci Med Sport; 6 (2): 199-209.
  • 34. Tomlin DL, Wenger HA. (2001). The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med; 31 (1): 1-11.
  • 35. Phillips SM, Green HJ, MacDonald MJ, et al (1995). Progressive effect of endurance training on VO2 kinetics at the onset of submaximal exercise. J Appl Physiol; 79 (6):1914-20.
  • 36. Neya M, Ogawa Y, Matsugaki N, et al. (2002). The influence of acute hypoxia on the prediction of maximal oxygen uptake using multistage shuttle run test. J Sports Med Phys Fitness; 42 (2): 158-64.
  • 37. Takahashi H, Inaki M, Fujimoto K. (1995). Control of the rate of phosphocreatine resynthesis after exercise in trained and untrained human quadriceps muscles. Eur J Appl Physiol; 71: 396-404.
  • 38. Bangsbo J. (2003). Fitness training in soccer: a scientific approach. Spring City (PA): Reedswain Publishing.
  • 39. Rakobowchuk M, Stuckey MI, Millar PJ, Gurr L, et al. (2009). Effect of acute sprint interval exercise on central and peripheral artery distensibility in young healthy males. Eur J Appl Physiol; 105(5):787–795
  • 40. Laughlin MH, Roseguini B. (2008). Mechanisms for exercise training-induced increases in skeletal muscle blood flow capacity: differences with interval sprint training versus aerobic endurance training. J Physiol Pharmacol; 59:71–88.
  • 41. Bailey S, Wilkerson D, Dimenna F, Jones A. (2009). Influence of repeated sprint training on pulmonary O2 uptake and muscle deoxygenation kinetics in humans. J Appl Physiol; 106(6):1875– 1887.
  • 42. Krustrup P, Hellsten Y, Bangsbo J. (2004). Intense interval training enhances human skeletal muscle oxygen uptake in the initial phase of dynamic exercise at high but not at low intensities. J Physiol; 559:335–345.
  • 43. Iaia FM, Rampinini E, Bangsbo J. (2009). High-intensity training in football. Int J Sports Physiol Perform; 4(3):291-306.
  • 44. Ross A, Leveritt M. (2001). Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering. Sports Med; 31(15):1063-82.
  • 45. Iaia F, Thomassen M, Kolding H, Gunnarsson T, et al. (2008). Reduced volume but increased training intensity elevates muscle Na+-K+ pump alphal-subunit and NHE1 expression as well as short-term work capacity in humans. Am J Physiol Regul Integr Comp Physiol; 294(3):966–974.
  • 46. Edge J, Bishop D, Goodman C. (2006). The effects of training intensity on muscle buffer capacity in females. Eur J Appl Physiol; 96(1): 97–105.
  • 47. McKenna M, Schmidt T, Hargreaves M, Cameron L, Skinner SL, Kjeldsen K. (1993). Sprint training increases human skeletal muscle Na(+)-K(+)-ATPase concentration and improves K+ regulation. J Appl Physiol.; 75 (1):173–180.
  • 48. Daussin FN, Zoll J, Ponsot E, Dufour SP, et al. (2008). Training at high exercise intensity promotes qualitative adaptations of mitochondrial function in human skeletal muscle. J Appl Physiol; 104(5):1436-41.
  • 49. Helgerud J, Hoydal K, Wang E, et al. (2007). Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc; 39: 665-71.
  • 50. Eversten F, Medbo JI, Bonen A. (2001). Effect of training intensity on muscle lactate transporters and lactate threshold of crosscountry skiers. Acta Physiol Scand; 173: 195-205.
  • 51. Billat LV. (2001). Interval training for performance: a scientific and empirical practice. Special recommendations for middle-and long-distance running – part I, aerobic interval training. Sports Med; 31 (1): 13-31.
  • 52. Billat LV. (2001). Interval training for performance: a scientific and empirical practice. Special recommendations for middleand long-distance running – part II, anaerobic interval training. Sports Med; 31 (2): 75-90.
  • 53. Balabinis CP, Psarakis CH, Moukas M, et al. (2003). Early phase changes by concurrent endurance and strength training. J Strength Cond Res; 17 (2): 393-401.
  • 54. Helgerud J, Kemi OJ, Hoff J. (2003). Pre-season concurrent strength and endurance development in elite soccer players. En: Hoff J, Helgerud J, editors. Football (soccer): new developments in physical training research.. Trondheim: Norwegian University of Science and Technology, 55-66.
  • 55. Dupont G, Akakpo K, Berthoin S. (2004). The effects of in-season, high-intensity interval training in soccer players. J Strength Cond Res; 18 (3): 584-9.
  • 56. Chamari K, Hachana Y, Kaouech F, et al. (2005). 2005) Endurance training and testing with the ball in young elite soccer players. Br J Sports Med; 39: 24-8.
  • 57. Hoff J, Wisloff U, Engen LC, et al. (2002). Soccer specific aerobic endurance training. Br J Sports Med; 36: 218-21.
  • 58. Sporis G, Ruzic L, Leko G. (2008). The anaerobic endurance of elite soccer players improved after a high-intensity training intervention in the 8-week conditioning program. J Strength Cond Res; 22(2):559–566.
  • 59. Impellizzeri FM, Marcora SM, Castagna C, et al. (2006). Physiological and performance effects of generic versus specific aerobic training in soccer players. Int J Sports Med; 27 (7): 483-92.
  • 60. Ferrari Bravo D, Impellizzeri FM, Rampinini E, Castagna C, et al. (2008). Sprint vs. interval training in football. Int J Sports Med; 29(8):668–674.
  • 61. Krustrup P, Mohr M, Amstrup T, Rysgaard T, et al. ( (2003). The yoyo intermittent recovery test: physiological response, reliability, and validity. Med Sci Sports Exerc; 35(4):697-705.
  • 62. Hill-Haas SV, Dawson B, Impellizzeri FM, Coutts AJ. (2011). Physiology of small-sided games training in football: a systematic review. Sports Med; Mar 1;41(3):199-220.
  • 63. Fernández-Fernández J, Sanz-Rivas D, Sanchez-Muñoz C, de la Aleja Tellez J, et al. (2011). Physiological responses to on-court vs running interval training in competitive tennis players. J Sports Sci Med; 10:540-545.
  • 64. Buchheit M, Laursen PB, Kuhnle J, Ruch D, et al. (2009). Gamebased training in young elite handball players. Int J Sports Med; 30(4):251-8.
  • 65. Gabbett TJ. (2006). Performance changes following a fieldconditioning program in junior and senior rugby league players. J Strength Cond Res; 20 (1): 215-21.
  • 66. Reilly T, White C. (2004). Small-sided games as an alternative to interval training for soccer players [abstract]. J Sports Sci; 22 (6): 559.
  • 67. Sassi R, Reilly T, Impellizzeri F. (2004). A comparison of smallsided games and interval training in elite professional soccer players [abstract]. J Sports Sci; 22 (6): 562.
  • 68. Dellal A, Varliette C, Owen A, Chirico E, et al. (2011). Small-sided games vs. interval training in amateur soccer players: effects on the aerobic capacity and the ability to perform intermittent exercises with changes of direction. J Strength Cond Res; Nov 29 [Epub ahead of print].
  • 69. Gabbett TJ. (2005). Changes in physiological and anthropometric characteristics of rugby league players during a competitive season. J Strength Cond Res; 19 (2):400-8.
  • 70. Schneiker K, Bishop D. (2008). The effects oh high-intensity interval training vs intermittent sprint training on physiological capacities important for team sport performance. En: Burnett A, editor. Science and nutrition in exercise and sport. Melbourne (VIC): Exerc Sport Sci Aust.
  • 71. Fernandez-Fernandez J, Zimek R, Wiewelhove T, Ferrauti A. (2012). High-intensity interval training vs. repeated-sprint training in tennis. J Strength Cond Res; 26(1):53-62.
  • 72. Mohr M, Krustrup P, Nielsen JJ, Nybo L, et al. (2007). Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development. Am J Physiol Regul Integr Comp Physiol; 292:R1594–R1602.
  • 73. Buchheit M, Mendez-Villanueva A, Quod M, Quesnel T, et al. (2010). Improving acceleration and repeated sprint ability in well-trained adolescent handball players: speed versus sprint interval training.. Int J Sports Physiol Perform; 5(2):152-64.
  • 74. Fitzsimons M, Dawson B, Ward D, et al. (1993). Cycling and running tests of repeated sprint ability. Aust J Sci Med Sports; 25:82-7.
  • 75. Wragg CB, Maxwell NS, Doust JH. (2000). Evaluation of the reliability and validity of a soccer specific field test of repeated sprint ability. Eur J Appl Physiol; 83:7783.
  • 76. Iaia FM, Bangsbo J. (2010). Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scand J Med Sci Sports; 20 Suppl 2:11-23.
  • 77. Thomassen M, Christensen PM, Gunnarsson TP, Nybo L, et al. (2010). Effect of 2 weeks intensified training and inactivity on muscle Nal/K1 pump expression, phospholemman (FXYD1) phosphorylation and performance in soccer players. J Appl Physiol; 108: 898–905.
  • 78. Bangsbo J, Gunnarsson TP, Wendell J, Nybo L, et al. (2009). Nal-K1 pump {alpha}2-subunit expression as well as short-and long-term work capacity in humans. J Appl Physiol; 107:1771–80.
  • 79. Coffey VG, Jemiolo B, Edge J, et al. (2009). Effect of consecutive repeated sprint and resistance exercise bouts on acute adaptive responses in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol; 297: R1441-51.