Asistente Robótico Socialmente Interactivo para Terapias de Rehabilitación Motriz con Pacientes de Pediatría

  1. L.V. Calderita 1
  2. P. Bustos 1
  3. C. Suárez Mejías 2
  4. F. Fernández 3
  5. R. Viciana 4
  6. A. Bandera 5
  1. 1 Universidad de Extremadura
    info

    Universidad de Extremadura

    Badajoz, España

    ROR https://ror.org/0174shg90

  2. 2 Hospital Universitario Virgen del Rocío
    info

    Hospital Universitario Virgen del Rocío

    Sevilla, España

    ROR https://ror.org/04vfhnm78

  3. 3 Universidad Carlos III de Madrid
    info

    Universidad Carlos III de Madrid

    Madrid, España

    ROR https://ror.org/03ths8210

  4. 4 Universidad de Jaén
    info

    Universidad de Jaén

    Jaén, España

    ROR https://ror.org/0122p5f64

  5. 5 Universidad de Málaga
    info

    Universidad de Málaga

    Málaga, España

    ROR https://ror.org/036b2ww28

Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Any de publicació: 2015

Volum: 12

Número: 1

Pàgines: 99-110

Tipus: Article

DOI: 10.1016/J.RIAI.2014.09.007 DIALNET GOOGLE SCHOLAR lock_openAccés obert editor

Altres publicacions en: Revista iberoamericana de automática e informática industrial ( RIAI )

Resum

Motor rehabilitation therapy pursuits the recovery of damaged areas from the repetitive practice of certain motor activities. The patient's recovery directly depends on the adherence to rehabilitation therapy. Conventional methods consisting of repetitions usually make the patient feel unmotivated and neglect complying with the appropriate treatments. In addition, the treatment of these motor deficits requires intensive and extended rehabilitation sessions that demand sustained dedication and effort by professionals and incur in accretive costs for the institutions. Within this framework, this paper describes the development and evaluation of a new neurorehabilitation therapy, whose core is a socially interactive robot. This robot is able to consistently engaged patients in the therapeutic interaction, providing tireless motivation, encouragement and guidance. The experience has also been the origin of the design and implementation of a novel control architecture, RoboCog, which has provided the robot perceptual and cognitive capabilities that allow a behavior more socially developed, proactive. Verification tests carried out on the various components of the architecture show us the proper working of these and its integration with the rest of the architecture. Furthermore, this therapy has been successfully with congenital brachial palsy (PBO), a disease caused by damage acquired at birth and affects motor mobility of the upper limbs, but not their intellectual and communicative abilities.

Referències bibliogràfiques

  • Alcázar, V., Guzmán, C., Milla, G., Prior, D., Borrajo, D., Castillo, L., Onaindía, E., 2010. Pelea: Planning, learning and execution architecture. 28th Workshop UK Planning and Scheduling Special Interest Group.
  • Brooks, R., 1991. Intelligence without representation. Artificial Intelligence 47, 139–159.
  • Calderita, L. V., Bandera, J. P., Bustos, P., Skiadopoulos, A., 2013a. Modelbased reinforcement of kinect depth data for human motion capture applications. Sensors 13 (7), 8835–8855.
  • Calderita, L. V., Bustos, P., Suárez, C., Fernández, F., Bandera, A., 2013b. Therapist: towards an autonomous socially interactive robot for motor and neurorehabilitation therapies for children. REHAB2013.
  • Cid, F., Manso, L. J., Calderita, L. V., Sánchez, A., Núñez, P., 2012. Engaging human-to-robot attention using conversational gestures and lipsynchronization. Journal of Physical Agents 6.
  • Cid, F., Moreno, J., Bustos, P., Núñez, P., 2014. Muecas: A multi-sensor robotic head for affective human robot interaction and imitation. Sensors 14 (5), 7711–7737.
  • Cid, F., Prado, J. A., Bustos, P., Núñez, P., 2013. A real time and robust facial expression recognition and imitation approach for affective human-robot interaction using gabor filtering.
  • Clark, A., 1999. An embodied cognitive science? Trends in Cognitive Sciences 3 (9).
  • Colombo, R., Pisano, F., Mazzone, A., Delconte, C., Micera, S., Carrozza, N., Dario, P., Minuco, G., 2007. Design strategies to improve patient motivation during robot-aided rehabilitation. Journal NeuroEng. Rehabilitation 4 (3).
  • Díaz, L., Pinel, A., Gueita, J., 2011. Terapia de movimiento inducido por restricción del lado sano. ¿alternativa en pacientes post-ictus? Fisioterapia, 271–277.
  • Dobkin, D., 2004. Strategies for stroke rehabilitation. Lancet. Neurol. 3, 528– 536.
  • Eimler, S., Pütten, A., Schächtle, U., Carstens, L., Krämer, N., 2010. Following the white rabbit - a robot rabbit as vocabulary trainer for beginners of english. Leitner, G. Hitz, M., y Holzinger, A., (Eds.): HCI in Work and Learning, Life and Leisure, 322–339.
  • Feil-Seifer, D., Mataric, M., 2011. Ethical principles for socially assistive robotics. IEEE Robotics and Automation Magazine 18 (1), 24–31.
  • Fong, T., Nourbakhsh, I., Dautenhahn, K., 2003. A survey of socially interactive robots. Robotics and Autonomous Systems 42 (3-4), 143–166.
  • Gat, E., et al., 1998. On three-layer architectures. Artificial intelligence and mobile robots, 195–210.
  • Holland, O., 2004. The future of embodied artificial intelligence: Machine consciousness? Embodied Artificial Intelligence, 37–53.
  • Leocani, L., Comi, G., 2006. Electrophysiological studies of brain plasticity of the motor system. Neurological Sciences 27 (1), 27–29.
  • Libin, A., Libin, E., 2004. Person-robot interactions from the robopsychologists’ point of view: the robotic psychology and robotherapy approach. Proceedings of the IEEE 92 (11), 1789–1803.
  • Manso, L., Bachiller, P., Bustos, P., Nez, P. N., Cintas, R., Calderita, L., 2010. Robocomp: a tool-based robotics framework. In: SIMPAR2010.
  • Mataric, M., 2006. Socially assistive robotics. IEEE Intell. Syst. 21 (4), 81–83.
  • Mejías, C. S., Echevarría, C., P. Núñez, P. B., Manso, L., Calderita, L. V., Leal, S., Parra, C., 2013. Ursus: a robotic assistant for training of children with motor impairments. Converging Clinical and Engineering Research on Neurorehabilitation Biosystems & Biorobotic 1, 249–253.
  • Okamura, A., Mataric, M., Christensen, H., 2010. Medical and health-care robotics. IEEE Robotics and Automation Magazine, 26–37.
  • Rego, P., Moreira, P. M., Reis, L. P., 2010. Serious games for rehabilitation: A survey and a classification towards a taxonomy. In: Information Systems and Technologies (CISTI), 2010 5th Iberian Conference on. IEEE, pp. 1–6.
  • Robins, B., Ferrari, E., Dautenhahn, K., Kronreif, G., Prazak-Aram, B., Gelderblom, G., Bernd, T., Caprino, F., Laudanna, E., Marti, P., 2010. Humancentred design methods: Developing scenarios for robot assisted play informed by user panels and field trials. Int. J. Hum.-Comput. Stud., 873–898.
  • Romero-Garcés, A., Manso, L., Gutiérrez, M., Cintas, R., Bustos, P., 2011. Improving the lifecycle of robotics components using domain-specific languages. In: DSLRob2011.
  • Saerbeck, M., Schut, T., Bartneck, C., Janse, M., 2010. Expressive robots in education- varying the degree of social supportive behavior of a robotic tutor. CHI2010 Proceedings of the 28th international conference on Human factors in computing systems, 1613–1622.
  • Shin, N., Kim, S., 2007. Learning about, from, and with robots: Students’ perspectives. ROMAN2007, 1040–1045.