Simulations of vented dust explosions in a 5 m3 vessel

  1. Tascón, A. 1
  2. Aguado, P.J. 2
  1. 1 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

  2. 2 Universidad de León
    info

    Universidad de León

    León, España

    ROR https://ror.org/02tzt0b78

Zeitschrift:
Powder Technology

ISSN: 0032-5910

Datum der Publikation: 2017

Ausgabe: 321

Seiten: 409-418

Art: Artikel

DOI: 10.1016/J.POWTEC.2017.08.047 SCOPUS: 2-s2.0-85027977705 WoS: WOS:000412963800041 GOOGLE SCHOLAR

Andere Publikationen in: Powder Technology

Zusammenfassung

Vented dust explosions were simulated using the computational fluid dynamics code FLACS-DustEx. The results were compared with previously reported experimental tests performed with maize starch in a 5.2 m3 vessel with a length/diameter ratio equal to 1.05 using three different vent areas. In addition, a sensitivity study was conducted with respect to some of the parameters involved in the numerical simulations, including dust/air mixture reactivity, grid resolution and area size and activation pressure of the venting device. The simulation results were generally in good agreement with the experimental values, but the CFD code overpredicted explosion pressures for the scenario with the smallest vent area. The sensitivity analysis indicated that the results were dependent on both grid resolution and mixture reactivity. Further simulations confirmed the influence of the activation pressure of the venting device on the explosion overpressure when the vent area was large in comparison to the volume, i.e. with a low KV (= V2/3 / A). These simulations made it possible to study scenarios outside the range of validity of current venting standards. © 2017 Elsevier B.V.