Effects of a 4-Week Respiratory Muscle Training Proposal for Semi-Professional Athletes

  1. Jorge Gutiérrez-Arroyo 1
  2. Fabio García-Heras 1
  3. Juan Rodríguez-Medina 1
  4. Alejandro Rodríguez-Fernández 1
  1. 1 Universidad de León
    info
    Universidad de León

    León, España

    ROR https://ror.org/02tzt0b78

    Geographic location of the organization Universidad de León
Journal:
E-Balonmano.com: Revista de Ciencias del Deporte

ISSN: 1885-7019

Year of publication: 2025

Volume: 21

Issue: 1

Pages: 91-100

Type: Article

DOI: 10.17398/1885-7019.21.37 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: E-Balonmano.com: Revista de Ciencias del Deporte

Abstract

Futsal is considered an intermittent sport, where the player needs to make high intensity efforts (neuromuscular and anaerobic component) and optimize recovery processes (aerobic component). If training can optimize these abilities, it is unknown how detraining can affect them. Therefore, the objective was to analyze the effects of a short period of detraining on the performance of futsal players. Thirteen futsal players (youth [n=7] and senior [n=6]) performed a 2- week pre- and post-detraining session, a CMJ, a 30-meter sprint, a 30-15 IFT, and an RSA, and together with the determination of the Total Score of Athelticism (TSA). Only the CMJ showed a significant decrease (p < 0.05; ES = 0.80 large) in both teams after detraining. Additionally, the senior team showed a significant reduction in the 30-meter sprint (p < 0.05; ES = 1.38 large). No changes in TSA were obtained after detraining. The effects of a 2-week detraining period are dependent on the tested capacity, showing a significant decrease in CMJ and maximum speed, with no changes in intermittent endurance, VO2max or TSA.

Bibliographic References

  • Achten, J., & Jeukendrup, A. E. (2003). Heart Rate Monitoring. Sports Medicine, 33(7), 517–538. https://doi.org/10.2165/00007256-200333070-00004
  • Ando, R., Ohya, T., Kusanagi, K., Koizumi, J., Ohnuma, H., Katayama, K., & Suzuki, Y. (2020). Effect of inspiratory resistive training on diaphragm shear modulus and accessory inspiratory muscle activation. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition Et Metabolisme, 45(8), 851–856. https://doi.org/10.1139/apnm-2019-0906
  • Aparicio, V. A., Carbonell-Baeza, A., Ruiz, J. R., Aranda, P., Tercedor, P., Delgado-Fernández, M., & Ortega, F. B. (2013). Fitness testing as a discriminative tool for the diagnosis and monitoring of fibromyalgia. Scandinavian Journal of Medicine & Science in Sports, 23(4), 415–423. https://doi.org/10.1111/j.1600-0838.2011.01401.x
  • Barnes, K. R., & Ludge, A. R. (2021). Inspiratory Muscle Warm-up Improves 3,200-m Running Performance in Distance Runners. The Journal of Strength & Conditioning Research, 35(6), 1739. https://doi.org/10.1519/JSC.0000000000002974
  • Bonafiglia, J. T., Preobrazenski, N., & Gurd, B. J. (2021). A Systematic Review Examining the Approaches Used to Estimate Interindividual Differences in Trainability and Classify Individual Responses to Exercise Training. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.665044
  • Brown, P. I., Sharpe, G. R., & Johnson, M. A. (2008). Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea. European Journal of Applied Physiology, 104(1), 111–117. https://doi.org/10.1007/s00421-008-0794- 7
  • Cahalin, L. P., & Arena, R. (2015). Novel Methods of Inspiratory Muscle Training via the Test of Incremental Respiratory Endurance (TIRE). Exercise and Sport Sciences Reviews, 43(2), 84. https://doi.org/10.1249/JES.0000000000000042
  • Chang, Y.-C., Chang, H.-Y., Ho, C.-C., Lee, P.-F., Chou, Y.-C., Tsai, M.-W., & Chou, L.-W. (2021). Effects of 4-Week Inspiratory Muscle Training on Sport Performance in College 800-Meter Track Runners. Medicina, 57(1), Article 1. https://doi.org/10.3390/medicina57010072
  • Charususin, N., Gosselink, R., McConnell, A., Demeyer, H., Topalovic, M., Decramer, M., & Langer, D. (2016). Inspiratory muscle training improves breathing pattern during exercise in COPD patients. EUROPEAN RESPIRATORY JOURNAL, 47(4), Article 4.
  • Crosfill, M. L., & Widdicombe, J. G. (1961). Physical characteristics of the chest and lungs and the work of breathing in different mammalian species. The Journal of Physiology, 158(1), 1–14.
  • Dempsey, J. A., Romer, L., Rodman, J., Miller, J., & Smith, C. (2006). Consequences of exercise-induced respiratory muscle work. Respiratory Physiology & Neurobiology, 151(2), 242–250. https://doi.org/10.1016/j.resp.2005.12.015
  • Derbakova, A., Khuu, S., Ho, K., Lewis, C., Ma, T., Melo, L. T., Zabjek, K. F., Goligher, E. C., Brochard, L., Fregonezi, G., & Reid, W. D. (2020). Neck and Inspiratory Muscle Recruitment during Inspiratory Loading and Neck Flexion. Medicine and Science in Sports and Exercise, 52(7), 1610–1616. https://doi.org/10.1249/mss.0000000000002271
  • Dominelli, P. B., Archiza, B., Ramsook, A. H., Mitchell, R. A., Peters, C. M., Molgat-Seon, Y., Henderson, W. R., Koehle, M. S., Boushel, R., & Sheel, A. W. (2017). Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise. Experimental Physiology, 102(11), 1535–1547. https://doi.org/10.1113/ep086566
  • Duarte, A., Soares, P. P., Pescatello, L., & Farinatti, P. (2015). Aerobic training improves vagal reactivation regardless of resting vagal control. Medicine and Science in Sports and Exercise, 47(6), 1159–1167. https://doi.org/10.1249/mss.0000000000000532
  • Edwards, A. M., & Walker, R. E. (2009). Inspiratory Muscle Training and Endurance: A Central Metabolic Control Perspective. International Journal of Sports Physiology and Performance, 4(1), 122–128. https://doi.org/10.1123/ijspp.4.1.122
  • Edwards, A. M., Wells, C., & Butterly, R. (2008). Concurrent inspiratory muscle and cardiovascular training differentially improves both perceptions of effort and 5000 m running performance compared with cardiovascular training alone. British Journal of Sports Medicine, 42(10), 823–827. https://doi.org/10.1136/bjsm.2007.045377
  • Enright, S. J., & Unnithan, V. B. (2011). Effect of inspiratory muscle training intensities on pulmonary function and work capacity in people who are healthy: A randomized controlled trial. Physical Therapy, 91(6), 894–905. https://doi.org/10.2522/ptj.20090413
  • Fabero-Garrido, R., del Corral, T., Angulo-Díaz-Parreño, S., Plaza-Manzano, G., Martín-Casas, P., Cleland, J. A., Fernándezde-las-Peñas, C., & López-de-Uralde-Villanueva, I. (2022). Respiratory muscle training improves exercise tolerance and respiratory muscle function/structure post-stroke at short term: A systematic review and meta-analysis. Annals of Physical and Rehabilitation Medicine, 65(5), 101596. https://doi.org/10.1016/j.rehab.2021.101596
  • Fernández-Lázaro, D., Gallego-Gallego, D., Corchete, L. A., Fernández Zoppino, D., González-Bernal, J. J., García Gómez, B., & Mielgo-Ayuso, J. (2021). Inspiratory Muscle Training Program Using the PowerBreath®: Does It Have Ergogenic Potential for Respiratory and/or Athletic Performance? A Systematic Review with Meta-Analysis. International Journal of Environmental Research and Public Health, 18(13), Article 13. https://doi.org/10.3390/ijerph18136703
  • HajGhanbari, B., Yamabayashi, C., Buna, T. R., Coelho, J. D., Freedman, K. D., Morton, T. A., Palmer, S. A., Toy, M. A., Walsh, C., Sheel, A. W., & Reid, W. D. (2013). Effects of Respiratory Muscle Training on Performance in Athletes: A Systematic Review With Meta-Analyses. The Journal of Strength & Conditioning Research, 27(6), 1643. https://doi.org/10.1519/JSC.0b013e318269f73f
  • Hopkins, W. G. (2000). Measures of Reliability in Sports Medicine and Science. Sports Medicine, 30(1), 1–15. https://doi.org/10.2165/00007256-200030010-00001
  • Johnson, M. A., Sharpe, G. R., & Brown, P. I. (2007). Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power. European Journal of Applied Physiology, 101(6), 761–770. https://doi.org/10.1007/s00421-007-0551-3
  • Karsten, M., Ribeiro, G. S., Esquivel, M. S., & Matte, D. L. (2018). The effects of inspiratory muscle training with linear workload devices on the sports performance and cardiopulmonary function of athletes: A systematic review and meta-analysis. Physical Therapy in Sport, 34, 92–104. https://doi.org/10.1016/j.ptsp.2018.09.004
  • Kwok, T. M. K., & Jones, A. Y. M. (2009). Target-flow Inspiratory Muscle Training Improves Running Performance in Recreational Runners: A Randomized Controlled Trial. Hong Kong Physiotherapy Journal, 27(1), 48–54. https://doi.org/10.1016/S1013-7025(10)70008-7
  • Langer, D., Ciavaglia, C., Faisal, A., Webb, K. A., Neder, J. A., Gosselink, R., Dacha, S., Topalovic, M., Ivanova, A., & O’Donnell, D. E. (2018). Inspiratory muscle training reduces diaphragm activation and dyspnea during exercise in COPD. Journal of Applied Physiology (Bethesda, Md.: 1985), 125(2), 381–392. https://doi.org/10.1152/japplphysiol.01078.2017
  • Langer, D., Jacome, C., Charususin, N., Scheers, H., McConnell, A., Decramer, M., & Gosselink, R. (2013). Measurement validity of an electronic inspiratory loading device during a loaded breathing task in patients with COPD. Respiratory Medicine, 107(4), 633–635. https://doi.org/10.1016/j.rmed.2013.01.020
  • Mackała, K., Kurzaj, M., Okrzymowska, P., Stodółka, J., Coh, M., & Rożek-Piechura, K. (2019). The Effect of Respiratory Muscle Training on the Pulmonary Function, Lung Ventilation, and Endurance Performance of Young Soccer Players. International Journal of Environmental Research and Public Health, 17(1), E234. https://doi.org/10.3390/ijerph17010234
  • Miller, M. R., Hankinson, J., Brusasco, V., Burgos, F., Casaburi, R., Coates, A., Crapo, R., Enright, P., van der Grinten, C. P. M., Gustafsson, P., Jensen, R., Johnson, D. C., MacIntyre, N., McKay, R., Navajas, D., Pedersen, O. F., Pellegrino, R., Viegi, G., Wanger, J., & ATS/ERS Task Force. (2005). Standardisation of spirometry. The European Respiratory Journal, 26(2), 319–338. https://doi.org/10.1183/09031936.05.00034805
  • Mills, D. E., Johnson, M. A., McPhilimey, M. J., Williams, N. C., Gonzalez, J. T., Barnett, Y. A., & Sharpe, G. R. (2014). Influence of oxidative stress, diaphragm fatigue, and inspiratory muscle training on the plasma cytokine response to maximum sustainable voluntary ventilation. Journal of Applied Physiology (Bethesda, Md.: 1985), 116(8), 970–979. https://doi.org/10.1152/japplphysiol.01271.2013
  • Mills, D. E., Mills, D. E., Johnson, M. A., McPhilimey, M. J., Williams, N. C., Gonzalez, J. T., Barnett, Y. A., & Sharpe, G. R. (2013). The effects of inspiratory muscle training on plasma interleukin-6 concentration during cycling exercise and a volitional mimic of the exercise hyperpnea. Journal of Applied Physiology (Bethesda, Md., 115(8), 1163–1172. https://doi.org/10.1152/japplphysiol.00272.2013
  • Quanjer, P. H., Tammeling, G. J., Cotes, J. E., Pedersen, O. F., Peslin, R., & Yernault, J. C. (1993). Lung volumes and forced ventilatory flows. The European Respiratory Journal, 6 Suppl 16, 5–40. https://doi.org/10.1183/09041950.005s1693
  • Ramsook, A. H., Molgat-Seon, Y., Schaeffer, M. R., Wilkie, S. S., Camp, P. G., Reid, W. D., Romer, L. M., & Guenette, J. A. (2017). Effects of inspiratory muscle training on respiratory muscle electromyography and dyspnea during exercise in healthy men. Journal of Applied Physiology (Bethesda, Md.: 1985), 122(5), 1267–1275. https://doi.org/10.1152/japplphysiol.00046.2017
  • Rehder-Santos, P., Abreu, R. M., Signini, É. D. F., Silva, C. D. da, Sakaguchi, C. A., Dato, C. C., & Catai, A. M. (2021). Moderateand High-Intensity Inspiratory Muscle Training Equally Improves Inspiratory Muscle Strength and Endurance—A Double-Blind Randomized Controlled Trial. International Journal of Sports Physiology and Performance, 16(8), 1111–1119. https://doi.org/10.1123/ijspp.2020-0189
  • Romer, L. M., McConnell, A. K., & Jones, D. A. (2002). Effects of inspiratory muscle training on time-trial performance in trained cyclists. Journal of Sports Sciences, 20(7), 547–590. https://doi.org/10.1080/026404102760000053
  • Sadek, Z., Salami, A., Joumaa, W. H., Awada, C., Ahmaidi, S., & Ramadan, W. (2018). Best mode of inspiratory muscle training in heart failure patients: A systematic review and meta-analysis. European Journal of Preventive Cardiology, 25(16), 1691– 1701. https://doi.org/10.1177/2047487318792315
  • Segizbaeva, M. O., & Aleksandrova, N. P. (2021). Respiratory Muscle Strength and Ventilatory Function Outcome: Differences Between Trained Athletes and Healthy Untrained Persons. In M. Pokorski (Ed.), Medical and Biomedical Updates (pp. 89– 97). Springer International Publishing. https://doi.org/10.1007/5584_2020_554
  • Sheel, A. W. (2002). Respiratory Muscle Training in Healthy Individuals. Sports Medicine, 32(9), 567–581. https://doi.org/10.2165/00007256-200232090-00003
  • Sheel, A. W., Boushel, R., & Dempsey, J. A. (2018). Competition for blood flow distribution between respiratory and locomotor muscles: Implications for muscle fatigue. Journal of Applied Physiology (Bethesda, Md., 125(3), 820–831. https://doi.org/10.1152/japplphysiol.00189.2018
  • Sheel, A. W., & Romer, L. M. (2012). Ventilation and respiratory mechanics. Comprehensive Physiology, 2(2), 1093–1142. https://doi.org/10.1002/cphy.c100046
  • Tong, T. K., Fu, F. H., Chung, P. K., Eston, R., Lu, K., Quach, B., Nie, J., & So, R. (2008). The effect of inspiratory muscle training on high-intensity, intermittent running performance to exhaustion. Applied Physiology, Nutrition, and Metabolism, 33(4), 671–681. https://doi.org/10.1139/H08-050
  • Volianitis, S., McConnell, A. K., Koutedakis, Y., McNaughton, L. R., Backx, K., & Jones, D. A. (2001). Inspiratory muscle training improves rowing performance. https://wlv.openrepository.com/handle/2436/7229
  • Walsh, J. J., Bonafiglia, J. T., Goldfield, G. S., Sigal, R. J., Kenny, G. P., Doucette, S., Hadjiyannakis, S., Alberga, A. S., Prud’homme, D., & Gurd, B. J. (2020). Interindividual variability and individual responses to exercise training in adolescents with obesity. Applied Physiology, Nutrition, and Metabolism, 45(1), 45–54. https://doi.org/10.1139/apnm-2019-0088
  • Weibel, E. R. (1984). The Pathway for Oxygen: Structure and Function in the Mammalian Respiratory System. Harvard University Press.
  • Witt, J. D., Guenette, J. A., Rupert, J. L., McKenzie, D. C., & Sheel, A. W. (2007). Inspiratory muscle training attenuates the human respiratory muscle metaboreflex. The Journal of Physiology, 584(Pt 3), 1019–1028. https://doi.org/10.1113/jphysiol.2007.140855