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Fig. 2. Characterization of [a] the uncoated SS substrate, [b] the base coating of APTES, and the functional coatings [c] APTES-TEOS, [d] APTES-SuAc and [e] APTES-AcAc: [1] SEM images, [2] AFM 
images and average roughness (Ra), [3] C1s region of the XPS spectra deconvoluted for the quantification of polar oxygen-containing groups and [4] WCA measurements.
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Fig. 1.  [a] Setup used for the plasma-polymerization process; [d] Scheme of plasma-polymerization process.
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Fig. 3. [a] Concentration of O-C=O species in the C 1s region of the X-ray photoelectron spectra and water contact angles of the 
functional coatings; [b] Biofilm production on each coating, relative to that on the uncoated SS, in two incubation conditions.

APTES-AcAcAPTES-SuAcAPTES-TEOS

APTES-TEOS APTES-SuAc APTES-AcAc
0

6

12

18

24

30

36

42

W
C

A
 (

º)

O
-C

=
O

 c
o

n
c
e
n

tr
a

ti
o
n
 (

a
t.

 %
)

0

4

8

12

16

20

24

28

[a]

Uncoated SS (100%)

0

20

40

60

80

100

120

B
io

fi
lm

 (
%

)

130

37 ºC / 24 hours

[b]

12 ºC / 144 hours

Fig. 5. Interaction between L. monocytogenes and [a] the uncoated SS plates, [b] the base coating of APTES and the functional coatings 
[c]  APTES-TEOS, [d] APTES-SuAc and [e] APTES-AcAc, showing different degrees of cell repulsion according to the generation of hydration layers.
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Fig. 4. Cellular hydrophobicity of L. monocytogenes 
CECT911 in two incubation conditions.
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Introduction

o The microbial colonization of food contact tools, surfaces and equipment in the form of 
biofilms may lead to the cross contamination of food products.

o Listeriosis is one of the most serious food-borne diseases, with an increasing trend of 
confirmed cases in the EU/EAA observed in recent years and a case fatality of 15.6%.

o Conventional compounds used for cleaning and disinfection in food industries do not eliminate 
bacterial biofilms completely and their use might imply health and environmental risks, and 
generate bacterial resistance or tolerance phenomena.

o Coatings that modify the physico-chemical properties of food-contact surfaces can prevent 
microbial attachment (first step for biofilm formation) without using biocidal agents, thus being 
able to produce non-toxic surfaces with antibacterial effects.

o OBJECTIVE: To reduce Listeria monocytogenes biofilm formation using a coating applied by 
atmospheric pressure plasma-polymerization on stainless steel (SS) plates.

o The hydrophilic character of the coatings, that can be a result of the increased abundance of oxygen-
containing polar groups (C-O, C=O and especially O-C=O) (Figure 3), suggests that a hydration layer might have 
acted as a water barrier against bacterial cells and proteins (Figure 5).

o The reduction in the occurrence of grooves of the SS substrate can reduce the entrapment of bacterial cells in 
zones with high cell-surface contact area.

o L. monocytogenes cells were less hydrophobic and seemed less prone to adhere to the studied surfaces at 
12 ⁰C than at 37 ⁰C, thus leading to lower biofilm production.

o The most promising coating was APTES-AcAc. It was the most hydrophilic and its surface was the smoothest 
and showed no grooves. It reduced the formation of L. monocytogenes biofilm to 13.3% and 44.9% relative to 
that on the uncoated SS after incubation at 12 ⁰C and 37 ⁰C, respectively.

o The increased effectiveness of the coatings at a relatively low temperature (12 ⁰C), representative of the 
conditions prevailing during food processing, would facilitate their implementation in the food industry.

o Tests with other microorganisms are needed. Considering the fact that several pathogenic microorganisms 
usually coexist in food-processing environments, future work will characterize the effectivity of the coatings on 
mixed-species biofilms to validate the usefulness of this technology in realistic settings. Also, the toxicity and 
durability of the coatings will be evaluated.

Conclusions

Methods

o An Atmospheric-Pressure Plasma Jet (APPJ) system was used to coat AISI 316 SS plates 
(Figure 1). The coatings comprised two parts that were deposited using different precursors: 
(1) a base coating of (3-aminopropyl)triethoxysilane (APTES) and (2) a functional coating of 
tetraethyl orthosilicate (TEOS), a 0.3M solution of succinic acid (SuAc) or acrylic acid (AcAc). 

o The uncoated SS and the coatings were characterized chemically (XPS) and morphologically 
(SEM and AFM) and their wettability was studied by measuring their water contact angle 
(WCA) (Figures 2 and 3[a]).

o To study the anti-biofilm effect of the coatings, biofilm formation by L. monocytogenes CECT911 
was quantified by crystal violet (CV) staining after incubation in two conditions: 37 ⁰C/24 hours 
and 12 ⁰C/144 hours (Figure 3[b]). In all the cases, control plates without coating were 
included.

o The cellular hydrophobicity of the L. monocytogenes CECT911 strain was determined with the 
adhesion-to-hydrocarbon method in the two incubation conditions of this study: 37 ⁰C/24 
hours and 12 ⁰C/144 hours (Figure 4).
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