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Abstract: The purpose of this study was to analyse the prevalence and genetic characteristics
of ESBL and acquired-AmpC (qAmpC)-producing Escherichia coli isolates from healthy and sick
dogs in Portugal. Three hundred and sixty-one faecal samples from sick and healthy dogs were
seeded on MacConkey agar supplemented with cefotaxime (2 µg/mL) for cefotaxime-resistant
(CTXR) E. coli recovery. Antimicrobial susceptibility testing for 15 antibiotics was performed and
the ESBL-phenotype of the E. coli isolates was screened. Detection of antimicrobial resistance and
virulence genes, and molecular typing of the isolates (phylogroups, multilocus-sequence-typing,
and specific-ST131) were performed by PCR (and sequencing when required). CTXR E. coli isolates
were obtained in 51/361 faecal samples analysed (14.1%), originating from 36/234 sick dogs and
15/127 healthy dogs. Forty-seven ESBL-producing E. coli isolates were recovered from 32 sick
(13.7%) and 15 healthy animals (11.8%). Different variants of blaCTX-M genes were detected among
45/47 ESBL-producers: blaCTX-M-15 (n = 26), blaCTX-M-1 (n = 10), blaCTX-M-32 (n = 3), blaCTX-M-55

(n = 3), blaCTX-M-14 (n = 2), and blaCTX-M-variant (n = 1); one ESBL-positive isolate co-produced
CTX-M-15 and CMY-2 enzymes. Moreover, two additional CTXR ESBL-negative E. coli isolates were
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CMY-2-producers (qAmpC). Ten different sequence types were identified (ST/phylogenetic-group/β-
lactamase): ST131/B2/CTX-M-15, ST617/A/CTX-M-55, ST3078/B1/CTX-M-32, ST542/A/CTX-M-
14, ST57/D/CTX-M-1, ST12/B2/CTX-M-15, ST6448/B1/CTX-M-15 + CMY-2, ST5766/A/CTX-M-32,
ST115/D/CMY-2 and a new-ST/D/CMY-2. Five variants of CTX-M enzymes (CTX-M-15 and CTX-
M-1 predominant) and eight different clonal complexes were detected from canine ESBL-producing
E. coli isolates. Although at a lower rate, CMY-2 β-lactamase was also found. Dogs remain frequent
carriers of ESBL and/or qAmpC-producing E. coli with a potential zoonotic role.

Keywords: antimicrobial resistance; dogs; Escherichia coli; ESBL; CTX-M-15; CTX-M-1; CTX-M-32;
CTX-M-55; CTX-M-14; qAmpC; CMY-2

1. Introduction

Antimicrobial resistance has become a major challenge for public health worldwide.
The selective pressure, which results from the long-term use of antibiotics, allowed bacterial
species to be resistant to these agents. It has been believed that this resistance is reaching
alarming levels, considering that resistance rates have risen extremely, during the last two
decades [1,2].

Escherichia coli, a Gram-negative bacterium belonging to the Enterobacteriaceae family,
is a common member of the intestinal microbiota of humans and companion animals [3,4].
However, this opportunistic pathogen can cause intestinal and extra-intestinal diseases.
It may contribute, in many cases, to antimicrobial resistance dissemination. Recently, the
World Health Organization [5] published a global priority list of antibiotic-resistant bacteria,
where third-generation cephalosporin- and/or carbapenem-resistant Enterobacteriaceae,
including E. coli, were included in the Priority 1 group. It is important to note that first-
generation cephalosporins and amoxicillin + clavulanic acid are among the most prescribed
drugs for dogs [3,4,6].

During recent years, the emergence and rapid dissemination of Enterobacteriaceae
carrying genes encoding the extended-spectrum-β-lactamases (ESBLs), acquired AmpC
β-lactamases (qAmpC), or carbapenemases are considered of great concern [4,7]. One
of the most important mechanisms is the plasmid-mediated production of extended-
spectrum β-lactamases (ESBLs), which can hydrolyse broad-spectrum cephalosporins
(such as cefotaxime). The horizontal gene transfer (HGT) among bacteria is driven by
plasmids [8,9], which play an important role in the transference of antibiotic-resistance
genes among bacteria, contributing to the spread of multidrug resistance (MDR), and
limiting therapeutic options [10]. ESBLs of the CTX-M-type and the qAmpC CMY-2 are
increasingly being reported in bacteria worldwide, while livestock or companion animals
are potential sources, leading to the spread of β-lactam-resistant bacteria in humans [11,12].

The close proximity between dogs and their owners increases the possibility of trans-
mitting resistant bacteria [13,14]. According to Dupouy et al. [6], dogs could transmit
MDR bacteria due to their close contact with humans, the high consumption of β-lactams
in small animal veterinary practice, and also the frequent occurrence of ESBL/qAmpC-
producing E. coli. The occurrence of ESBL-producing E. coli has been widely reported
in both healthy companion animals [12,15] and diseased ones [1,16–19]. International
high-risk clones of E. coli are frequently detected worldwide, not only in human infections
but also in those of companion animals [2,3,17]. Over the past 5 years, the presence of
ESBL/qAmpC genes in Enterobacteriaceae strains from faeces of dogs in Europe has been
reported in several studies [6,12,13,20], including Portugal [21,22]. However, knowledge
about the clonality of ESBL/qAmpC-producing isolates and the potential zoonotic reser-
voir of human-associated STs is not well documented. Moreover, there is still a lack of
data about their prevalence in sick and healthy dogs, simultaneously. In this study, we
aim at characterizing the prevalence and diversity of ESBL- and qAmpC- producing E. coli
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faecal isolates from healthy and sick dogs in Portugal, as well as determining their genetic
lineages and phylogenetic groups.

2. Materials and Methods
2.1. Animals and Sampling

A total of 361 faecal samples were recovered from 127 healthy and 234 hospitalized
dogs from different cities in Portugal. All samples were collected between April andAugust
2017 (one sample/animal) using standardized procedures [23].

The hospitalized dogs came from 7 different veterinary hospitals or clinic centers;
the healthy dogs came from a local kennel located in Vila Real (n = 31) and from local
houses (n = 96). The seven hospitals/clinic centers were located in different centers of the
Portuguese territory: Bragança (1 hospital, n = 29 dogs), Vila Real (4 hospitals, n = 62),
Aveiro (1 hospital, n = 58), Leiria (1 hospital, n = 17), and Lisbon (1 hospital, n = 68)
(Figure S1). It is important to note that faecal samples from unhealthy dogs were collected
from the ordinary population of animals hospitalized in hospitals or veterinary clinics,
not endangering their health, or causing harm or pain. In the same line, faecal samples
from healthy animals were also recovered by their owners. All of them were analysed with
the owner’s permission or with kennel collaboration. The faecal samples were dispatched
immediately to the Microbiology Laboratory of the University of Trás-os-Montes and
Alto-Douro (UTAD).

2.2. E. coli Isolation

From each faecal sample, a small portion of 2 g was diluted in Brain Heart Infusion
(BHI, Condalab, Spain) and incubated in aerobic conditions for 24 h at 37 ◦C. After that,
samples were seeded on MacConkey agar (Becton, Dickinson and Company Sparks, Le
Pont de Claix, France) supplemented with cefotaxime (2 µg/mL) and incubated for 24 h
at 37 ◦C. Colonies showing E. coli morphology were recovered (one colony per sample)
and identified by a classical biochemical method named IMViC (Indol, Methyl-red, Voges–
Proskauer, and Citrate).

The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
method (MALDI-TOF MS, MALDI Biotyper®from Bruker Daltonik, Bremen, Germany)
was applied in this study to confirm bacterial species identification. E. coli isolates were
kept at −80 ◦C and were further characterized.

2.3. Susceptibility Testing

Antimicrobial susceptibility testing was performed using the Kirby–Bauer disk dif-
fusion method and according to Clinical and Laboratory Standards Institute guidelines
(2019) [24] for the following 15 antibiotics (µg/disk): ampicillin (10), amoxicillin + clavu-
lanic acid (20), cefotaxime (30), cefoxitin (30), ceftazidime (30), aztreonam (30), imipenem
(10), gentamicin (10), streptomycin (10), ciprofloxacin (5), trimethoprim-sulfamethoxazole
(1.25 ± 23.75), amikacin (30), tobramycin (10), tetracycline (30), and chloramphenicol
(30). In addition, the screening of phenotypic ESBL production was carried out by the
double-disk synergy test using cefotaxime, ceftazidime, and amoxicillin/clavulanic discs
in Mueller Hinton (MH) agar (Condalab, Spain) [24].

2.4. DNA Extraction and Quantification

Genomic DNA from cefotaxime-resistant (CTXR) isolates were extracted using the
boiled method [25]. In order to quantify the nucleic acid concentration and the level of
purity, the absorbance readings were taken at 260 and 280 nm (Spectrophotometer ND-100,
Nanodrop, Thermo Fisher Scientific, Waltham, MA USA).

2.5. Antibiotic Resistance and Virulence Genes Detection

The genetic basis of resistance was investigated using PCR methods and subsequent
sequencing of the obtained amplicons (specific genes). Negative and positive controls
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of the University of La Rioja were used in this work. Moreover, the data regarding PCR
conditions for each primer (Sigma-Aldrich, Madrid, Spain) as well as the size of the
obtained amplicons that were sequenced are illustrated in detail in Table S1.

The presence of blaCTX-M (Groups 1 and 9), blaCMY-2, blaDHA-1, blaTEM, blaSHV, blaVEB,
blaKPC2/3, blaNDM, blaOXA-48, and blaVIM was tested by PCR/sequencing (Table S1) [26–30].
Furthermore, the mcr-1 gene (colistin resistance) [31], tetA/tetB (tetracycline resistance) [32],
stx1,2 genes related to Shiga toxin-producing E. coli (STEC) [33], and int1 gene (integrase of
class 1 integrons) and its variable region (RV int1) were also analysed by PCR/sequencing [30].
Analysis of DNA sequences was performed using the standard databases (nucleotide collec-
tion) in the BLASTN program (2021 version), available at the National Center for Biotechnol-
ogy Information (https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 31 January 2021).

2.6. Multilocus Sequence Typing and Phylogroup Typing of E. coli Isolates

Multilocus sequence typing (MLST), by the analysis of seven housekeeping genes
(fumC, adk, purA, icd, recA, mdh, and gyrB), was carried out for thirteen representative
E. coli isolates (based on the antimicrobial resistance phenotype) according to the protocol
described on PubMLST (Public databases for molecular typing and microbial genome
diversity) website [34]. The allele combination was determined after sequencing of the
seven genes, and the sequence type (ST) and clonal complex (CC) were identified.

Phylogenetic classification of all E. coli isolates was performed according to the pres-
ence of chuA, yjaA, and TSPE4.C2 genes [35].

2.7. Statistical Analyses

All statistical analyses were performed using the JMP Statistics software (v7.0, SAS
Institute). The Pearson’s Chi-square and Fisher’s exact tests were performed to understand
and identify the associations between the origin of strain (healthy or sick dog) and antibiotic
resistance (antibiotic and gene). In this line, we consider two categorical variables: the
sick or healthy animal, and the resistance for each antibiotic/gene. A p-value < 0.05 was
established as indicating statistical significance [36].

3. Results

CTXR E. coli isolates were recovered in 51/361 faecal samples tested (14.1%), originat-
ing from 36/234 sick dogs (15.4%) and 15/127 healthy dogs (11.8%). These CTXR isolates
were detected among 29 male dogs (56.9%) and 22 female dogs (43.1%); most of them
belonged to an undetermined breed (n = 38), followed by the Labrador/Golden Retriever
breed (n = 4), while the remaining dogs belonged to different pure breeds (Tables 1 and 2).

Forty-seven ESBL-producing E. coli isolates were detected among the 51 CTXR isolates,
recovered from 32 sick and 15 healthy dogs (frequencies of 13.7% and 11.8%, respectively).
The phenotypes of antibiotic resistance for these ESBL-producing isolates are shown in
Table 1 and the rates of antibiotic resistance of these isolates depending on their origin
(sick or healthy dogs) are represented in Figure 1. No statistical difference could be
established between the origin of the strain (healthy or sick dog) and the resistance to
different antibiotics (p > 0.05) (Figure 1).

The two remaining ESBL-positive isolates were revealed negative to all ESBL genes
under study. Furthermore, a blaTEM gene was detected in eight blaCTX-M-producing isolates.
On the other hand, six ESBL-positive isolates showed cefoxitin-resistance (FOXR), and the
blaCMY-2 gene was detected in one CTX-M-15-producing isolate obtained from a sick dog;
the others ESBL-positive-FOXR isolates were negative for blaCMY-2 and blaDHA genes by
PCR. Among the ESBL-positive isolates, resistance to tetracycline was mediated by the tetA
(24 isolates) and/or tetB genes (Table 1).

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Table 1. Phenotypic and molecular features of the 47 ESBL-producing E. coli isolates recovered from healthy and sick dogs in Portugal.

Isolate
Number Origin a Sick/Healthy Gender b Age c Breed d Phenotype of Antibiotic

Resistance e β-Lactamases Other Genes
and Integrons f PG g MLST h

X605 HV Lisboa Sick M 15A UD AMP, CTX, ATM, CHL, CIP, TET CTX-M-15 tet(A) B1 ST6448

X614 HV Lisboa Sick F 2A UD AMP, AUG, FOX, CTX, CAZ, ATM,
CHL, CIP, TET

CTX-M-15,
CMY-2 tet(A) B1 ST6448

X607 HV Lisboa Sick F 1A UD AMP, AUG, CTX, CAZ, ATM, CIP,
TOB, CN, S, TET CTX-M-15 tet(A) B2 ST131

X610 HV Lisboa Sick F 1,5A UD AMP, CTX, CAZ, ATM, CIP, S, TET CTX-M-15 tet(A) B2 ST12

X603 CV Bragança Sick F 10A UD AMP, AUG, CTX, CAZ, ATM, CIP,
TOB, CN, S, TET CTX-M-15 tet(A) B2 ST131

X602 CV VR Sick F 3A UD AMP, AUG, CTX, CHL, TOB, CN,
S, TET CTX-M-15 tet(A) B2 ST12

X558 Kennel Healthy M 2A Labrador AMP, AUG, CTX, CAZ, CIP, SXT, S,
TET

CTX-M-15,
TEM int1 B1 NT

X562 Kennel Healthy F 4M UD AMP, CTX, CIP, SXT, S, TET CTX-M-15,
TEM tet(A), int1 B1 NT

X569 HVTM Sick M 4A UD AMP, AUG, CTX, CAZ, ATM, CIP,
SXT, TOB, CN, S, TET

CTX-M-15,
TEM

tet(A), tet(B),
int1 A NT

X575 CV Transm Sick M 4A UD AMP, AUG, CTX, CAZ, ATM, CIP,
SXT, TOB, CN, TET

CTX-M-15,
TEM

tet(A), tet(B),
int1 A NT

C10151 HV Lisboa Sick F 11A UD AMP, AUG, CTX, TET CTX-M-15,
TEM ND A NT

X550 HD Healthy F 8A UD AMP, AUG, CTX, CAZ, ATM,
CHL, CIP, SXT, TET CTX-M-15 tet(A), int1 B1 NT

X556 HD Healthy F 14A Yorkshire AMP, AUG, FOX, CTX, ATM CTX-M-15 ND B1 NT

X563 Kennel Healthy M 5A Rottweiler AMP, AUG, CTX, TET CTX-M-15 ND A NT

X588 HVTM Sick M 5A UD AMP, AUG, CTX, CAZ, ATM,
CHL, CN, TET CTX-M-15 tet(A) D NT
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Table 1. Cont.

Isolate
Number Origin a Sick/Healthy Gender b Age c Breed d Phenotype of Antibiotic

Resistance e β-Lactamases Other Genes
and Integrons f PG g MLST h

X598 HVTM Sick M 6A Russell
Terrier

AMP, AUG, CTX, CAZ, ATM,
CHL, CIP, SXT, TET CTX-M-15 ND B1 NT

X576 HV Lisboa Sick M 15A UD AMP, CTX, CAZ, ATM, CHL, CIP,
SXT, TET CTX-M-15 tet(A), int1 D NT

X577 HV Lisboa Sick F 6M UD AMP, AUG, CTX, CAZ, ATM,
CHL, CIP, SXT, TET CTX-M-15 tet(A), int1 B1 NT

X578 HV Lisboa Sick M 13A UD AMP, AUG, FOX, CTX, CAZ, ATM,
CHL, CIP, SXT, TOB, TET CTX-M-15 tet(A) B1 NT

X580 HV Lisboa Sick F 5A UD AMP, CTX, CAZ, ATM, CHL, CIP,
SXT, TET CTX-M-15 int1 B1 NT

X584 HV Lisboa Sick M 5A UD AMP, CTX, CAZ, ATM, CHL, CIP,
SXT, TET CTX-M-15 tet(A), int1 B1 NT

X604 HV Lisboa Sick M 12A UD AMP, AUG, CTX, ATM CTX-M-15 ND D NT

X618 HV Lisboa Sick F 2A UD AMP, AUG, FOX, CTX, CAZ, ATM,
CHL, CIP, SXT, TET CTX-M-15 tet(A), int1 B1 NT

X620 HV Lisboa Sick M 9A UD AMP, AUG, CTX, CAZ, ATM, CIP,
SXT, TOB, CN, S, TET CTX-M-15 tet(A), int1 D NT

X622 HV Lisboa Sick M 3A UD AMP, AUG, FOX, CTX, CAZ, ATM,
CIP, SXT, S, TET CTX-M-15 ND A NT

X599 CV Bragança Sick M 7A Rodengo AMP, AUG, FOX, CTX, CAZ, ATM,
CHL, CIP, TET CTX-M-15 ND B1 NT

C10264 CV Vouga Sick F 9M Pincher AMP, CTX, CAZ CTX-M-1 ND D ST57

X554 HVTM Sick M 1A Labrador AMP, CTX, CAZ, TET CTX-M-1,
TEM ND A NT

X557 Kennel Healthy F 3A Serra
Estrela AMP, AUG, CTX, CAZ, TOB, AK, S CTX-M-1 ND B1 NT

X559 Kennel Healthy F 3M UD AMP, AUG, CTX, CAZ CTX-M-1 ND D NT

X560 Kennel Healthy M 1A Labrador AMP, AUG, CTX, CAZ, TET CTX-M-1 ND B1 NT
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Table 1. Cont.

Isolate
Number Origin a Sick/Healthy Gender b Age c Breed d Phenotype of Antibiotic

Resistance e β-Lactamases Other Genes
and Integrons f PG g MLST h

X581 HV Lisboa Sick M 14A UD AMP, AUG, CTX, CAZ, TET CTX-M-1 tet(A) B1 NT

X611 HV Lisboa Sick M 5A UD AMP, CTX, CAZ, ATM, CHL, CIP,
CN, TET CTX-M-1 tet(A) D NT

X616 HV Lisboa Sick M 3M UD AMP, AUG, CTX, CAZ, TET CTX-M-1 ND B1 NT

X617 HV Lisboa Sick F 3A UD AMP, CTX, CAZ, TET CTX-M-1 tet(A) B1 NT

C10265 CV Bragança Sick M 1A UD AMP, CTX, CAZ, S CTX-M-1 ND A NT

X555 HD Healthy M 6A Pastor
alemão

AMP, CTX, CAZ, ATM, CIP, SXT,
TOB, CN, TET CTX-M-55 tet(B), int1 A ST617

X568 HD Healthy M 7A UD AMP, AUG, CTX, CAZ, ATM,
CHL, CIP, SXT, TET CTX-M-55 tet(A), int1 B1 NT

C10149 HVTM Sick F 1,5A UD AMP, CTX, CAZ, CHL, TOB, CN,
S, TET

CTX-M-55,
TEM tet(A) A NT

X573 HD Healthy M 1A UD AMP, AUG, CTX, CAZ, ATM,
CHL, SXT, S, TET CTX-M-32 int1 A ST5766

X561 Kennel Healthy M 2A Gado
transm.

AMP, AUG, CTX, ATM, CHL, CIP,
SXT, TOB, CN, S, TET CTX-M-32 tet(A), int1 B1 ST3078

X571 HD Healthy M 1A UD AMP, AUG, CTX, CAZ, CHL, SXT,
S, TET

CTX-M-32,
TEM tet(B), int1 B1 NT

X572 HD Healthy F 1A UD AMP, AUG, CTX, CAZ, S, TET CTX-M-14 tet(B) A ST542

X574 CVTransm Sick M 4A UD AMP, CTX, CHL, SXT, TOB, CN, S,
TET CTX-M-14 ND A NT

X565 HD Healthy M 6A UD AMP, CTX, ATM, CIP, SXT, TOB,
CN, S, TET

CTX-M-
variant ND A NT

C10147 HVLisboa Sick M 7A UD AMP, CTX, CHL, SXT, CN, S, TET TEM-1 tet(A), int1 B2 NT

X587 HVTM Sick M 2A Bulldog
Francês

AMP, CTX, ATM, CHL, SXT, CN, S,
TET No bla genes int1 A NT

a HD- healthy dogs from their owners; HVTM- Hospital Veterinário de Trás os Montes (Vila Real); Kennel-healthy dogs from the kennel (Vila Real); CV Transm- Clínica Veterinária Transmonvete (Vila Real,
Portugal); HV Lisboa- Hospital Veterinário de São Bento (Lisboa); CV Vouga- Clínica Veterinária do Vouga (Sever do Vouga, Portugal); CV Bragança- Clínica Veterinária de Macedo de Cavaleiros (Bragança, Portugal);
CV VR- Clínica Veterinária dos Quinchosos (Vila Real, Portugal); b female; M-male; c A- years; M- months; d UD- undetermined dog breed; e AMP, ampicillin; AUG, amoxicillin–clavulanic acid; FOX, cefoxitin;
CTX, cefotaxime; CAZ, ceftazidime; ATM, aztreonam; CHL, chloramphenicol; CIP, ciprofloxacin; TOB, tobramycin; AK, amikacin; CN, gentamicin; SXT, trimethoprim–sulfamethoxazole; S, streptomycin; TET,
tetracycline; f ND: not detected; g Phylogroups; h MLST-Multilocus Sequence Typing; NT: not tested.
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Table 2. Phenotypic and molecular features of ESBL-negative E. coli isolates recovered from healthy and sick dogs in Portugal.

Isolate
Number Origin a Gender b Age c Breed d Antimicrobial Resistance

Phenotype e
Resistance

Geno-
type

Other Re-
sistance
Genes f

PG g MLST h

X551 HD F 24M Golden
Retriever AMP, CTX CMY-2 ND D New ST *

X567 CV
Vouga F 8A UD AMP, AUG, FOX, CTX,

CAZ, CIP, S, TET
CMY-2,
TEM tet(A) D ST115

X549 HVTM F 6A Leão
Rodesea AMP, AUG, CTX ND ND D NT

C10266 HV
Lisboa F 6A UD

AMP, AUG, FOX, CTX,
CAZ, ATM, NA, CIP, SXT,

S, TET
ND tet(B) A NT

a HD- healthy dogs from their owners; HVTM- Hospital Veterinário de Trás os Montes (Vila Real); Kennel- healthy dogs from kennel (Vila
Real); CV Transm- Clínica Veterinária Transmonvete (Vila Real, Portugal); HV Lisboa- Hospital Veterinário de São Bento (Lisboa); CV Vouga-
Clínica Veterinária do Vouga (Sever do Vouga, Portugal); CV Bragança- Clínica Veterinária de Macedo de Cavaleiros (Bragança, Portugal);
CV VR- Clínica Veterinária dos Quinchosos (Vila Real, Portugal); b F-female; M-male; c A- years; M- months; d UD- undetermined dog
breed; e AMP, ampicillin; AUG, amoxicillin–clavulanic acid; FOX, cefoxitin; CTX, cefotaxime; CAZ, ceftazidime; ATM, aztreonam; NA,
nalidixic acid; CIP, ciprofloxacin; SXT, trimethoprim–sulfamethoxazole; S, streptomycin; TET, tetracycline; IMP, imipenem; ETP, ertapenem.
f ND: not detected; g Phylogroups; h MLST-Multilocus Sequence Typing; NT: not tested. * New ST allelic combination: fumC (26), adk (4),
purA (5), icd (25), gyrB (2), recA (2), and mdh (5).
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Figure 1. Prevalence of antibiotic-resistance among ESBL-producing E. coli isolates in sick and
healthy dogs. Antibiotics tested: AUG, amoxicillin-clavulanic acid; FOX, cefoxitin; CAZ, ceftazidime;
ATM, aztreonam; CHL, chloramphenicol; CIP, ciprofloxacin; SXT, trimethoprim-sulfamethoxazole;
TOB, tobramycin; CN, gentamicin; AK, amikacin; S, streptomycin; TET, tetracycline. No significant
association was detected between antibiotic resistance and type of animal (sick or healthy) (p > 0.05).

Different variants of blaCTX-M genes were detected among 45 of these 47 ESBL-producing
isolates (95.4%): blaCTX-M-15 (n = 26 isolates), blaCTX-M-1 (n = 10), blaCTX-M-32 (n = 3),
blaCTX-M-55 (n = 3), blaCTX-M-14 (n = 2), and blaCTX-M (n = 1, no variant determined) (Table 1).
Figure 2 shows the distribution of the ESBL variants depending on the origin of the isolates;
no statistical difference could be established between the origin of the strain (healthy or sick
dog) and the ESBL type (p > 0.05) (Figure 2), except for CTX-M-32, in which this relation
was present (it was detected just in healthy dogs).
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Figure 2. Distribution of ESBL-encoding genes from E. coli isolates in sick and healthy dogs. Gene
encoding β-lactamases with p < 0.05 is indicated with (*).

Two of the four CTXR and ESBL-negative isolates were CMY-2-producers (qAmpC
type), and they were recovered from a healthy and a sick dog (one each) (Table 2). We
could not detect the mechanisms of CTXR in the two remaining ESBL-negative isolates.
None of the CTXR E. coli isolates carried the mcr-1 gene (related to colistin resistance).

Moreover, other β-lactamases genes such as blaVEB, blaNDM, blaOXA-48, and blaVIM were
tested by PCR/sequencing but all isolates were revealed to be negative. Furthermore,
the stx1,2 genes related to Shiga toxin-producing E. coli (STEC) were not detected among
our isolates.

The ESBL-positive isolates were ascribed to phylogenetic groups B1 (n = 21 isolates),
A (n = 14), D (n = 7), and B2 (n = 5, two of them CTX-M-15-producers, typed as ST131)
(Table 1). Furthermore, the four ESBL-negative isolates belonged to phylogroups D (n = 3,
including the two CMY-2 producers) and A (n = 1) (Table 2).

MLST analysis, which was performed in thirteen representative E. coli isolates (based
on the antimicrobial-resistance phenotype), revealed ten different lineages (ST/phylogenetic-
group/β-lactamase): ST131/B2/CTX-M-15 (n = 2, from sick dogs, one from Lisbon and
another from Bragança hospitals), ST617/A/CTX-M-55 (n = 1, from a healthy dog),
ST3078/B1/CTX-M-32 (n = 1, from a healthy dog from the kennel), ST57/D/CTX-M-1
(n = 1, from a sick dog from Vouga clinic), ST12/B2/CTX-M-15 (n = 2 sick dogs, one from
Vila Real and another from Lisbon), ST6448/B1/CTX-M-15 (n = 2 sick dogs, one of them
CMY-2 positive and both from Lisbon), ST542/A/CTX-M-14 (n = 1, from a healthy dog),
ST5766/A/CTX-M-32 (n = 1, from a healthy dog), and ST115/D/CMY-2 (n = 1, from a
sick dog from Vouga clinic); moreover, one CMY-2-producing E. coli isolate of phylogroup
D obtained in a healthy dog, presented a new combination of alleles (fumC (26), adk (4),
purA (5), icd (25), gyrB (2), recA (2) and mdh (5)), rendering a new ST (Table 1).

4. Discussion

Regarding the Portuguese situation, the prevalence of ESBL-producing E. coli isolates
in healthy dogs obtained in this work is similar to previous studies performed in dogs and
cats [12,22,23] in the South and the North of Portugal. Worldwide, this prevalence was
lower than the ones obtained with faecal samples of healthy dogs in Germany, Brazil, or
China (24–29%) [15,37,38], but it is similar to the results of previous studies performed in
Tunisia and France (12.7–17%) [11,39]. These differences could be explained by differences
in the epidemiology of ESBL genes among different countries, considering the year in
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which the studies were performed, but we cannot discard methodological effects in the
different studies.

Five types of CTX-M ESBLs were detected, indicating a high diversity of CTX-M genes
(mainly blaCTX-M-15 gene) among the CTXR E. coli isolates; these results are in accordance
with a previous study done in Portugal on healthy dogs [12]. This blaCTX-M-15 gene was also
the most frequently detected in E. coli isolated from dogs in different countries [3,15,40].
The CTX-M-1- and CTX-M-15-encoding genes were also detected among E. coli canine
isolates in Italy [41] and Denmark [13], which are in agreement with our data. The same
variants of CTX-M genes were observed in a recent study conducted on healthy humans in
Spain [42]. Moreover, during the last few years, new variants are becoming more common,
in particular CTX-M-55 [3], especially from companion animals in Asian countries [43].

In the past, the blaCTX-M-15 gene was mainly associated with strains of human origin
while blaCTX-M-1 was the major CTX-M sub-type among livestock and companion animal
isolates in Europe [15,41]. Actually, this close correspondence is no longer so obvious, and
our results confirm these data. A further study should be implemented to determine the
ESBL gene in the two uncharacterized ESBL-producing isolates.

In this study, the CMY-2 gene was the qAmpC β-lactamase type found among two
CTXR-ESBL-negative isolates and one ESBL-producing isolate, and it has been previously
reported among E. coli strains from healthy and sick pets worldwide [20,23,39,44]. The
detection of tetA and/or tetB genes in most of our tetracycline-resistant isolates seem to be
similar to the results obtained by Costa et al. [45] from dogs, in Northern Portugal.

In this work, the most common phylogenetic groups among our isolates were B1 and
A, these being the phylogroups more associated with commensal E. coli both in humans
and in dogs, as well as in other animals [11,13]. On the other hand, isolates belonging to
phylogroup B2 and D are more likely to be recovered from extra-intestinal infections of
companion animals [4]. An interesting study related to 78 dogs that visited a veterinary
hospital in Northern Portugal (either for a normal checkout or in case of disease) revealed
the prevalence of E. coli isolates of groups A (n = 19), D (n = 9), and B1 (n = 7) [46], similar to
our observation. So, the carriage of ESBL/qAmpC producing E. coli of these phylogroups
in the gastrointestinal tract suggests a potential reservoir of MDR ESBL-producing bacteria
in dogs.

Regarding the MLST results, the pandemic virulent E. coli ST131-B2 clone was detected
among two isolates of sick dogs tested in this study. It is important to note that this clone
was widely detected in pets [47,48], including in sick dogs in Portugal [17,49].

On the other hand, we detected one E. coli strain, ST57/D/CTX-M-1, that was recently
detected in Portugal (associated with CMY-2 gene) in a dog with a UTI from a Lisbon
hospital [17]. Similarly, the same lineage was identified in a faecal isolate from a healthy
dog in Mexico, characterized as CMY-2/ST57/D) [50].

The frequency of the ST6448 lineage, which was observed in two sick dogs in this
study, is considered an infrequent clone in humans and companion animals. This lineage
was also found among a vulture faecal sample from Canary Islands [51]. To our knowledge,
there is only one previous report related to the detection of this clone in humans, which
was recently reported in healthy children from Sweden [52].

Additionally, our data indicate the presence of E. coli ST12/B2/CTX-M-15, which
should be considered an agent of high clinical relevance for humans and animals. Fur-
thermore, the ST12 lineage (associated with CMY-2) was identified in healthy dogs from
Spain [6], Brazil [2], and France [11]. Furthermore, this lineage was found among iso-
lates from children with a febrile UTI in France [53] and in healthy humans in Spain [42].
These findings highlight the dissemination of ST12 lineage and its presence in animal and
human’ isolates.

To our knowledge, the ST617 lineage (clonal complex ST10) was identified for the first
time in pets from Portugal in this study. CTX-M-15-producing E. coli isolates of sequence
type ST617/phylogroup A have been reported in sick dogs in France [40] and in hospital-
ized patients in Tunisia [54,55]. Similarly, Rocha-Gracia et al. [50] identified the same lineage
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among a faecal isolate from healthy dogs in Mexico (ST617/A/CTX-M-15). According to a
recent study, Gauthier, et al. [56] found this lineage in four isolates from dogs in France
harbouring carbapenemase genes. Furthermore, this clone was widely disseminated.

The ST542 lineage detected in one of the healthy dogs is not commonly reported;
however, this clone was found in a farmworker from Germany [57] and in a pig in Aus-
tralia [58]. On the other hand, an ST115/CMY-2 isolate (found in a sick dog from the Vouga
clinic) was previously reported among chickens and human patients in Germany [47].

We also detected a ST5766/A/CTX-M-32 isolate in a healthy dog; this clone is unusual,
and it was previously reported in broilers’ osteomyelitis in Brazil [59]. To our knowledge,
this is the first report of the ST5766 clone among pets, and the first detection in Europe. In
this study, we also found an E. coli isolate, ST3078/B1/CTX-M-32, recovered from a healthy
dog from a kennel. To our knowledge, the only unique previous study related to the ST3078
lineage was found in wastewater in Eastern France [60]. This suggests that the environment
likely plays a role in the spread of ESBL-producing E. coli isolates in the community,
associated with a One Health approach (human-animals-environment). Importantly, a new
combination of alleles was found in an isolate of a healthy dog, rendering a new ST.

The use of β-lactams in the clinical practice of veterinary medicine may be considered
one of the reasons for the high incidence of ESBL-producers worldwide. Thus, pets
can be a significant source of ESBL/qAmpC-producing E. coli isolates. Considering the
prevalence of ESBLs (notably the large reservoir in dogs of E. coli isolates with genes
encoding CTX-M-15 and CTX-M-1, or CMY-2 β-lactamases), there is a serious and plausible
risk of future acquisition of these resistant genes by their owners.

5. Conclusions

Antimicrobial resistance can make infections difficult to treat, which represents a
global public health problem, due to the negative consequences for human health. This
study shows that healthy and sick dogs are frequent carriers of faecal ESBL-producing E. coli
strains, harbouring different variants of blaCTX-M genes (mostly blaCTX-M-15 and blaCTX-M-1),
and presenting a high genetic MLST diversity (including the ST131/B2 lineage). Although
at a lower rate, the blaCMY-2 gene was also found. This fact suggests the implication of
mobile genetic elements in the dissemination of this relevant mechanism of resistance. This
underlies the complexity of the antimicrobial resistance of bacteria occurring in dogs and
the possible interspecies transmission between humans, domestic animals, and into the
environment, important knowledge given the One-Health approach.
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