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Bean production is affected by a wide diversity of fungal pathogens, among them
Rhizoctonia solani is one of the most important. A strategy to control bean infectious
diseases, mainly those caused by fungi, is based on the use of biocontrol agents
(BCAs) that can reduce the negative effects of plant pathogens and also can promote
positive responses in the plant. Trichoderma is a fungal genus that is able to induce
the expression of genes involved in plant defense response and also to promote plant
growth, root development and nutrient uptake. In this article, a strategy that combines
in silico analysis and real time PCR to detect additional bean defense-related genes,
regulated by the presence of Trichoderma velutinum and/or R. solani has been applied.
Based in this strategy, from the 48 bean genes initially analyzed, 14 were selected, and
only WRKY33, CH5b and hGS showed an up-regulatory response in the presence of
T. velutinum. The other genes were or not affected (OSM34) or down-regulated by the
presence of this fungus. R. solani infection resulted in a down-regulation of most of
the genes analyzed, except PR1, OSM34 and CNGC2 that were not affected, and the
presence of both, T. velutinum and R. solani, up-regulates hGS and down-regulates
all the other genes analyzed, except CH5b which was not significantly affected. As
conclusion, the strategy described in the present work has been shown to be effective
to detect genes involved in plant defense, which respond to the presence of a BCA or
to a pathogen and also to the presence of both. The selected genes show significant
homology with previously described plant defense genes and they are expressed in
bean leaves of plants treated with T. velutinum and/or infected with R. solani.

Keywords: biotic stress, systemic acquired resistance, induced systemic resistance, hypersensitive response,
defense genes, biocontrol agent, Phaseolus vulgaris
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INTRODUCTION

The common bean (Phaseolus vulgaris L.) is the most important
food legume crop worldwide. Bean production is often affected
by biotic and abiotic factors (Guerrero-González et al., 2011) by
microorganisms, humidity, temperature. . . that are detected as
signals for the activation of plant response mechanisms. This crop
is affected by a wide diversity of fungal pathogens (Sclerotinia
spp., Fusarium spp., Phytium spp., Botrytis spp.,...) among
them Rhizoctonia solani JG Kühn [Teleomorph: Thanatephorus
cucumeris (AB Frank) Donk] has a remarkable importance
as responsible of important economic losses in this crop
(Valenciano et al., 2006). R. solani is a necrotrophic pathogen
responsible for the root and hypocotyl diseases. Plant infection
occurs through wounds or by the direct action of the fungal
mycelium, which tears the cuticle and penetrates the epidermis
(Guerrero-González et al., 2011).

As a strategy to control bean infectious diseases, mainly
those caused by fungi, the use of biocontrol agents (BCA) can
reduce the negative effects of plant pathogens and they also can
promote positive responses in the plant (Shoresh et al., 2010). The
genera Trichoderma, Gliocladium, Rhizobium, Pseudomonas, are
beneficial organisms that have shown good efficiency as BCAs
against pathogenic microorganisms. Trichoderma (Teleomorph:
Hypocrea) is a fungal genus that is found in the soil, and it
is a secondary fast growing opportunistic invasive. In addition,
Trichoderma biocontrol strains are able to induce the expression
of genes involved in defense response and also to promote plant
growth, root development, and nutrient uptake (Hermosa et al.,
2012).

The relationships established between plant and micro-
organisms are very diverse. When a plant is exposed to
a pathogenic microorganism, the production of molecules
associated to salicylic acid is increased, being this a systemic
acquired resistance (SAR) response. The response of plants
against non-pathogenic microorganisms is different, resulting in
activation of signaling cascades that are dependent on jasmonic
acid and ethylene, such as hydroperoxide lyase, peroxidase, and
phenylalanine ammonia lyase, all of which belong to an induced
systemic resistance (ISR) response (Druzhinina et al., 2011).
Other responses result in a rapid cell death in infected tissues,
then plants activate the hypersensitive response that involves
the accumulation of salicylic acid, reactive oxygen species and
an increased the influx of Ca2+ (Guerrero-González et al.,
2011).

In the tripartite interaction of bean plants with the pathogen
R. solani and a biocontrol Trichoderma species, several changes
are produced in the plant, such as the increase in phenolic acid
and lignin, accumulation of phytoalexins (Guerrero-González
et al., 2011), and down- or up-regulation of defense-related genes
expression (Mayo et al., 2015). Different categories of defense-
related genes whose expression is modulated by biotic stresses
have been described in bean plant interacting with pathogen and
non-pathogenic microorganisms (Mayo et al., 2015).

Our hypothesis is that the combination of real time
PCR with “in silico” analysis is a valid strategy to identify
bean defense-related genes regulated by BCAs and/or plant

pathogens. The aim is develop a systematic strategy to
detect bean defense-related genes regulated by the presence of
Trichoderma velutinum and/or R. solani. Finally, the procedure
has been validated by the analysis of expression of the
selected genes in the presence or absence of these two
fungi.

MATERIALS AND METHODS

Trichoderma and Rhizoctonia solani
Isolates and Culture Collections
Trichoderma velutinum T028, was collected from the bean
traditional production area (Protected Geographical Indication,
PGI), called “Alubia La Bañeza - León” (EC Reg. n.256/2010
published on March 26th, 2010, OJEU L880/17), from a
High Quality variety of beans (Figure 1) without any genetic
manipulation. It was isolated from soil plot bean in the Astorga
region (León, Spain). This isolate gave percentages of inhibition
greater that 60% in membrane assays and 40% in direct
confrontation assays with R. solani, and that was able to sporulate
on potato-dextrose-agar (PDA) medium.

Rhizoctonia solani R43 was isolated from bean plants of the
same PGI and selected based on its high virulence. The isolated
strains were stored in the collection “Pathogens and Antagonists
of the Laboratory Diagnosis of Pests and Diseases” (PALDPD,
University of León, León, Spain).

Isolates were inoculated on PDA (Becton Dickinson,
Germany) medium and grown at 25◦C in the dark for 1 week.
After this incubation time T. velutinum T028 was exposed to
light in order to induce the spore’s formation.

FIGURE 1 | Bean seeds of “Canela” variety of the Protected
Geographical Indication “Alubia La Bañeza – León” (Spain).
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Plant Materials and Growth Conditions
Sixty bean seeds (Canela landrace, PGI “Alubia de la Bañeza –
León,” Figure 1) per treatment were germinated and cultured in
presence or absence of the fungi in four conditions according
to the procedure previously described by Mayo et al. (2015):
(i) T. velutinum (T028) isolate plus R. solani (R43) (RT028);
(ii) T. velutinum isolate (T028) without pathogen (C = control)
(CT028); (iii) control (without T. velutinum) with R. solani (RC)
and (iv) control without fungi (CC). The culture was carried out
in climatic chamber and growth conditions were performed as
previously described (Mayo et al., 2015). Six bean leaves from
45 day-old plants of each treatment were randomly collected and
stored at−80◦C until use.

RNA Extraction and Purification
The procedures for RNA extraction were performed as described
previously (Reid et al., 2006). Bean leaves were lyophilized and
were ground to a fine powder in liquid nitrogen using a mortar
and pestle. The powder was mixed with 20 ml of extraction
buffer/g of sample (extraction buffer: 0.1% SDS, 100 mM LiCl,
10 mM EDTA, 100 mM Tris-HCl, pH9) pre-warmed at 65◦C, and
20 ml/g of phenol-chloroform-isoamyl alcohol 25:24:1 (Sigma–
Aldrich, St. Louis, MO, USA). Then, the mixtures, in eppendorf
tubes, were centrifuged at 13,000 rpm for 10 min at 4◦C. The
aqueous layer was transferred to a new tube. This step was
repeated twice. Nucleic acids were precipitated with 1 volume
of LiCl 4 M, mixed and kept overnight at 4◦C. Tubes were then
centrifuged at 13,000 rpm for 30 min at 4◦C, and the resulting
pellets were washed with ice cold ethanol 70%-DEPC, centrifuged
again at 13,000 rpm for 10 min at 4◦C and air dried. Finally,
the pellets were dissolved in 50–200 µl H2O-DEPC and stored
at−20◦C until use.

RNA concentrations and its purity were estimated from the
A260/280 absorbance ratio with a NanoDrop (Thermo Scientific,
Wilmington, DE, USA), considering the ideal absorbance ratio
(1.8 ≤ A260/280 ≤ 2.0) and 1% agarose gel was run to visualize
the integrity of the RNA.

cDNA Synthesis
Approximately 5 µg of RNA were treated with DNase using the
TURBO DNAfreeTM Kit (Applied Biosystems, Foster City, CA,
USA), according to the manufacturer instructions. cDNA was
synthesized using High-Capacity cDNA Reverse Transcription
kit (Applied-Biosystems, Foster City, CA, USA) according to the
manufacture’s manual.

qPCR Conditions and Analysis
qPCR reactions were performed with 7300 System (Applied
Biosystems, Foster City, CA, USA) using SYBR R© Green. Each
reaction was performed in 20 µl containing 10 µl of 2 X Power
SYBR Green PCR Master Mix (Life Technologies), 0.2–0.3 µM
primers and cDNA samples diluted 1:20. Each qPCR reaction
was performed in triplicate. Reactions were run using the cycling
parameter described previously (Reid et al., 2006) and the qPCR
data were analyzed by the 2−11Ct method (Pfaffl, 2001). In order
to analyze the qPCR data, Act11 gene was used as housekeeping

to determine the relative expression level of the other genes
analyzed in this work (Borges et al., 2012). T. velutinum T028
strain was selected as reference strain in this study based
on its positive effects on bean phenotype with and without
R. solani infection (data no published). For the determination
of qPCR efficiency of each primer pairs, a standard curve was
performed using the following cDNA dilutions: 1:4, 1:16, 1:64;
1:256 and 1:1024. Every measurement was made in triplicate.
The corresponding qPCR efficiencies (E) were calculated for
every primer pair with the software 7300 System SDS software
(Applied Biosystems, Foster City, CA, USA) according to the
equation E = (10−1/slope

− 1) × 100 (Rutledge and Stewart,
2008).

The significance of the differences between the gene
expressions levels were compared by the Student’s t-test using
SAS (SAS Institute Inc., 2004, Cary, NC, USA).

RESULTS

Selection of Putative Bean
Defense-Related Genes
Following an exhaustive and systematic analysis, summarized in
the Figure 2, several bean genes were selected for their expression
analysis in leaves from bean plants grown in interaction with
T. velutinum and infected or not with Rhizoctonia solani. Thus, as
result of the search in the literature, 48 genes were firstly found,
showing stress and/or defense response (Table 1). Only those
genes that resulted to be expressed in P. vulgaris leaves, based on
transcriptomic data reported in the Phytozome database1, were
considered for qPCR expression analysis in leaves. The genes for
which we confirmed expression in leaves were considered for
further analyses.

As result, from the 48 genes selected for their involvement in
bean stress and/or defense responses, only 19 were selected which
showed a detectable level of expression in bean leaves.

The selected genes can be included in nine different groups
(Table 2): (i) involved in the regulation of the balance
between necrotrophic and biotrophic pathogen responses:
WRKY33 (WRKY transcription factor) (NM129404.3) (Bakshi
and Oelmüller, 2014); (ii) pathogenesis related genes: PR1
(pathogenesis related 1) (HO864272) (Guerrero-González et al.,
2011), PR2 (β 1-3 endoglucanase) (HO864270) (Guerrero-
González et al., 2011), PR3 (chitinase class I) (TC18606)
(Pereira et al., 2014), PR4 (pathogenesis related 4) (HO864354)
(Guerrero-González et al., 2011), PR16a (germin.like protein
8) (CB540239) (Borges et al., 2012), IPER (basic peroxidase)
(AF007211) (Upchurch and Ramirez, 2010), PPO (polyphenol
oxidase) (EF158428) (Upchurch and Ramirez, 2010); (iii) related
with the ethylene signaling pathway: ERF1 (ethylene-responsive
transcription factor 1) (AF076277) (Lorenzo et al., 2003),
ERF5 (ethylene-responsive transcription factor 5) (At5g47230)
(Moffat et al., 2012), and CH5b (endochitinase precursor)
(FE897014.1) (Vellicce et al., 2006); (iv) involved in phytoalexin

1http://phytozome.jgi.doe.gov/pz/portal.html
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biosynthesis: PAL1 (phenylalanine and histidine ammonia-
lyase) (KF279696) (Kim and Hwang, 2014); (v) related in
osmotin biosynthesis: OSM34 (osmitin-like protein) (At4g11650)
(Sharma et al., 2013); (vi) involved in Ca2+ signaling: CNGC2
(cyclic nucleotide-gated ion channel 2) (CB542582) (Borges et al.,
2012); (vii) needed for antimicrobials and oxylipins (defense
signaling molecules): HPL (hydroperoxide lyase) (AW733791)
(Upchurch and Ramirez, 2010), Lox2 (lipoxygenase 2) (D13949)
(Upchurch and Ramirez, 2010), Lox7 (lipoxygenase 2) (Upchurch
and Ramirez, 2010); (viii) GSTa (2,4-D inducible glutathione
S-transferase) (HO864392) (Guerrero-González et al., 2011); and
(ix) hGS (homoglutathione synthetase) (HO864377) both related
with oxidative stress (Guerrero-González et al., 2011).

However, only 14 genes were selected to the study of the
expression genes because PR16a, IPER, PPO, Lox2, and Lox7,
showing negative qPCR results, were finally discarded.

Selection of a Trichoderma Strain to
Validate the Gene Selection Strategy
Trichoderma velutinum T028 was the selected isolate, based on its
positive effect on bean growth. Thus, plants inoculated with this
strain showed a significant increase in dry weight of both aerial
parts and root system, including when R. solani was present in
the substrate (Figure 3). Thus, when bean plants were treated
with T. velutinum T028 they increased respect to control plants
(CC) 4.75% their diameter of hypocotyl, 10.75% their length of
root system, 4.27 and 5.51% in dry weight of aerial parts and root
system, respectively. When plants were infected with R. solani,
the action of T. velutinum T028 caused an increased respect
to the control plant with the pathogen (RC) of the diameter

of hypocotyl in 8.76, 21.15% in the length of root system, and
11.05 and 3.43% in dry weight of aerial parts and root system
respectively.

Based on these results, this isolate was used for further studies.
In addition, this is the first report in which the effects of this strain
on bean phenotype and plant gene regulation are studied.

Effect of R. solani Infection on
Expression of the Selected Genes.
Validation of the Procedure Used to
Select Bean Genes Involved in Defense
Responses (Strategy Validation I)
A significant down-regulation of expression of PR2, PR3, PR4,
ERF1, ERF5, PAL1, HPL, and GTSa genes with ratios of
expression ranging from 0.149 fold for PAL1 and 0.763 fold
for PR3 was observed in bean plants grown in the presence of
R. solani (RC) compared to control plants (CC). Conversely,
expression of PR1, OSM34, CNGC2, and hGS genes was up-
regulated, but with non-statistically significant differences with
a ratios between 1.289 and 1.193 for PR1 and hGS, respectively
(Figure 4).

Effect of Trichoderma on Expression of
the Selected Genes (Strategy
Validation II)
Trichoderma treatment also down-regulates expression of most of
the bean defense-related genes, but at a lower level than R. solani.
Thus, when T. velutinum T028 was in the substrate (CT028),
PR2, PR3, PR4, ERF1, ERF5, PAL1, CNGC2, HPL, and GSTa

FIGURE 2 | Schematic representation of the work flow set up in the present work to select bean genes involved in plant defense.
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TABLE 1 | Genes selected for stress and/or defense response and their empirical expression in Phaseolus vulgaris leaves.

Id Gene Accession number Functional annotation NCBI Phytozome

Pereira et al., 2014

1 Chit AY357300.2 Chitanase

2 Glu1 DQ093563.1 β-1,3-glucanase

3 Pod3 AF485265.1 Peroxidase

4 PR3 TC18606 Chitinase class I Phvul.009G116600

5 Lox1 U76687.2 Lipoxygenase

Upchurch and Ramirez, 2010

6 PPO EF158428 Polyphenol oxidase

7 PR10 AJ289155 Stress-induced ribonuclease-like protein

8 PR12 BU964598 Defensin precursor

9 MMP2 AY057902 Matrix metalloproteinase 2

10 CHS X53958 Chalcone synthase

11 AOS DQ288260 Allene oxide synthase

12 HPL AW733791 Hydroperoxide lyase Phvul.005G116800

13 LOX2 D13949 Lipoxygenase 2 Phvul.005G156700

14 LOX7 U36191 Lipoxygenase 2 Phvul.005G156900

15 IPER AF007211 Basic peroxidase Phvul.009G215000

Borges et al., 2012

16 PR16a CB540239 Germin-like protein 8 Phvul.010G129900

17 PGIa CB542106 Polygalacturonase-inhibitor-like protein

18 MAPKK CB543156 MEK map kinase kinase

19 PROF CB543496 Profilin

20 CNGC2 CB542582 Cyclin nucleotide-gated ion channel 2 Phvul.008G036200

Guerrero-González et al., 2011

21 PR1 HO864272 Pathogenesis related protein 1 Phvul.003G109100

22 PR2 HO864270 Pathogenesis related protein 2 Phvul.003G109200

23 PR4 HO864354 Pathogenesis related protein 4 Phvul.006G102300

24 PR10 HO864271 Pathogenesis related protein 10)

25 LTP2 HO864366 Lipid-transfer protein 2

26 SIP HO864290 Syringolide-induced protein B13-1-9

27 DAAP HO864358 Defense associated acid phosphatase

28 CHI HO864289 Chalcone isomerase

29 hGS HO864377 Homoglutathione synthetase Phvul.006G094500

30 aDO1 HO864351 Alpha- dioxygenase 1

31 CPRD14 HO864341 CPRD14 protein

32 OPR5 HO864304 12-oxophytodienoic acid 10, 11-reductase

33 GST22 HO864275 Glutathione S-transferase 22

34 CPRD8 HO864396 CPRD8 protein

35 UDPGT HO864301 UDP-glucosyl transferase 72E1

36 ERD15 HO864375 ERD15 protein

37 GTSa HO864392 2,4-D inducible glutathione S-transferase Phvul.002G241400

38 GST15 HO864369 Glutathione S-transferase 15

Gallou et al., 2009

39 GST1 J03679 Gluthatione-S-transferase 1

Lehtonen et al., 2008

40 TSI-1 BQ121547 TSI-1 protein

41 Lip BQ112158 Lipase-like protein

42 Amintransf2 BQ517030 Aminotransferase 2 Phvul.006G029100

Bakshi and Oelmüller, 2014

43 WRKY33 NM129404.3 WRKY transcription factors Phvul.008G090300

Vellicce et al., 2006

44 CH5b FE897014.1 Endochitinase precursor Phvul.009G116500

Lorenzo et al., 2003

(Continued)
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TABLE 1 | Continued

Id Gene Accession number Functional annotation NCBI Phytozome

45 ERF1 AF076277 Ethylene-Responsive Transcription Factor 1 Phvul.007G127800

Moffat et al., 2012

46 ERF5 At5g47230 Ethylene-Responsive Transcription Factor 5 Phvul.002G055700

Kim and Hwang, 2014

47 PAL1 KF279696 Phenylalanine and histidine ammonia-lyase Phvul.001G177800

Sharma et al., 2013

48 OSM34 At4g11650 Osmotin-like protein Phvul.002G155500

were significantly down-regulated with expression ratios ranging
from 0.168 for PR4 to 0.754 for ERF1. However, WRKY 33,
CH5b, and hGS were up-regulated when compared with the levels
of expression in control plants, with relative expression levels
between 2.462 for CH5b and 1.576 for hGS (Figure 5). OSM34
was slightly but not significantly up-regulated.

Effect of Interaction of T. velutinum and
R. solani on Expression of the Selected
Genes (Strategy Validation III)
When T. velutinum T028 and R. solani (RT028) were in the
substrate, the genes WRKY33, PR2, PR3, PR4, ERF1, ERF5, PAL1,
OSM34, HPL and GSTa were significantly down-regulated with
values between 0.179 for PAL1 and 0.631 for WRKY33. In the
case of PR1 and CNGC2, they were also down-regulated but not
significantly respect to control plant (C). Conversely, hGS was
up-regulated with a significant ratio of 1.589 respect to control
plants, while CH5b was not significantly up-regulated with a ratio
of 1.613 (Figure 6).

DISCUSSION

Plants have developed some defensive strategies to perceive
pathogen attack and to translate this perception into an
appropriate adaptive response. During attack, plants are able
to enhance their resistance (induced, acquired, hypersensitive)
(Lodha and Basak, 2012). Contact with pathogenic and non-
pathogenic microorganisms triggers two mechanisms: (i) SAR
that is usually triggered by local infections, it provides long-
term systemic resistance to pathogen attack and requires the
involvement of the signal molecule salicylic acid (Durrant
and Dong, 2004), and (ii) ISR that is known to result from
colonization of roots by certain non-pathogenic microorganisms
and is dependent on components of the jasmonic acid and
ethylene signaling pathways (Shoresh et al., 2010). Then, the
combination of both types of induced resistance response can
protect the plant against pathogens and can even result in additive
level of induced protection against pathogens through both the
jasmonic acid/ethylene and salicylic acid pathways (Verhagen
et al., 2006).

In the present work we developed a strategy to select genes
involved in bean defense response, which would belong to those
pathways, but also genes that can contribute to plant defense
by other mechanisms. In this sense several previous works have

described genes involved in bean defense response (Guerrero-
González et al., 2011; Mayo et al., 2015). However, in the
present work, by a systematic approach, 48 genes were initially
considered, and 14 finally selected, which match with the criteria
set up in this work: (i) they showed significant homology with
previously described plant defense genes, and (ii) were expressed
in bean leaves of plants treated with Trichoderma and/or infected
with R. solani.

The expression of P. vulgaris defense-related genes was
analyzed in leaves, although the interaction with Trichoderma
and/or R. solani is initially produced at the root level, to
determine if the signals generated in roots as result of this
interaction are able to systematically stimulate the bean defense
along long distance from roots to the leaves. The isolate
T. velutinum T028 was selected following a similar strategy to that
previously described (Mayo et al., 2015), and based on its positive
effect on bean growth. In this work, to select a Trichoderma
isolate, the results of the in vitro membrane assays and direct
confrontation assays against R. solani were analyzed. Isolate
Trichoderma T019 was then selected, showing a percentage of
inhibition higher than 40% in the membrane assays, and/or 20%
in the direct confrontation assays. This isolate also showed the
best positive effects on plant phenotype among all the analyzed
isolates.

WRKY transcription factors have been involved in the
regulation of plant defense gene expression (Rushton and
Somssich, 1998; Singh et al., 2002). Thus, WRKY33 has a role
in biotic stress defense, where it regulates the balance between
necrotrophic and biotrophic pathogen responses (Lippok et al.,
2007; Pandey and Somssich, 2009; Birkenbihl et al., 2012).
Previous studies have pointed out the involvement of Arabidopsis
WRKY transcription factors in regulating the expression of
PR genes by direct binding (Chen et al., 2002; Kim et al.,
2006). A rapid pathogen-induced WKRY33 expression did not
require salicylic acid signaling but a downregulation of this
gene involved a direct activation of jasmonic acid (Bakshi and
Oelmüller, 2014). In the present case, when bean plants were
in contact T. velutinum T028 without pathogen, the WRKY33
gene expression was significantly up-regulated while the PR genes
expression (PR2, PR3 and PR4) was significantly down-regulated
compared to expression levels in plants without Trichoderma
treatment. In the present work, when R. solani was added to
the substrate, expression of WRKY33 was significantly down-
regulated in plants with Trichoderma inoculation, while PR2, PR3
and PR4 were down-regulated. In the study by Mayo et al. (2015),
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TABLE 2 | Common bean sequences used for primer design for RT-PCR analysis.

Gene Functional annotation NCBI Phytozome Forward/Reverse Efficiency
Reference

Reference genes

Act11 Actin-11 Phvul.008G011000 TGCATACGTTGGTGATGAGG 1.084

AGCCTTGGGGTTAAGAGGAG

Ukn1 Unknown Phvul.011G023200 ATTCCCATCATGCAGCAAAG 0.937

AGATCCCTCCAGGTCAATCC

Balance between necrotrophic and biotrophic pathogen responses

WRKY33 WRKY transcription factors Phvul.008G090300 TTTCACAGGACAGGTTCCAGC 0.938

CCTTTGACAGAAATGACTGAAGGA

Pathogenesis related genes

PR1 Pathogenesis Related 1 Phvul.003G109100 TGGTCCTAACGGAGGATCAC 1.094

TGGCTTTTCCAGCTTTGAGT Mayo et al., 2015

PR2 Beta 1-3 Endoglucanase Phvul.003G109200 GTGAAGGACGCCGATAACAT 1.048

ACTGAGTTTGGGGTCGATTG Mayo et al., 2015

PR3 Chitinase class I Phvul.009G116600 TGGAGTTGGTTATGGCAACAA 1.034

ATTCTGATGGGATGGCAGTGT

PR4 Pathogenesis-related 4 Phvul.006G102300 CGCAGTGAGTGCATATTGCT 0.922

TGTTTGTCACCCTCAAGCAC Mayo et al., 2015

PR16a Germin-like protein 8 Phvul.010G129900 GGCAGTCTCATGGTTATGGTTT –

GCATGCTCAAGTCTCAACACAT

IPER Peroxidase precursor Phvul.009G215000 GGCAAGCATTATATGGTTGAAA –

GATGGCAACATCCATCACTTTA

PPO Polyphenol oxidase Phvul.008G073200 GAAGACGATGATTTGCTGGTTA –

AAGAAACATTTTCCTTTGTGAAA

Ethylene signaling pathway

ERF1 Ethylene-Responsive Transcription Factor 1 Phvul.007G127800 CGCTCTCAAGAGGAAACACTCC 0.937

TGAATCAGAAGGAGGAGGGAAT

ERF5 Ethylene-Responsive Transcription Factor 5 Phvul.002G055700 GGCTCCAAGTGGATTGAGAAC 0.932

TCAGAATCAGATAACTACAAAGCACAA

CH5b Endochitinase precursor Phvul.009G116500 CAGCCAAAGGCTTCTACACC 0.883

TTGTTTCGTGAGACGTTTGC Mayo et al., 2015

Phytoalexins biosynthesis

PAL1 Phenylalanine and histidine ammonia-lyase Phvul.001G177800 TGAGAGAGGAGTTGGGCACT 1.034

TTCCACTCTCCAAGGCATTC

Osmotin biosynthesis

OSM34 Osmotin-like protein Phvul.002G155500 GAACGGAGGGTGTCACAAAATC 0.927

CGTAGTGGGTCCACAAGTTCCT

Involved in Ca2+ signaling

CNGC2 Cyclic nucleotide-gated ion channel 2 Phvul.008G036200 ATTCAATTTGCTTGGAGACGTT 0.98

ACAGTTTTATTGAAGGCCAGGA

Antimicrobials and oxylipins (defense signaling molecules)

HPL Hydroperoxide lyase Phvul.005G116800 TCAAGGCTACATTTGTATTTCCA 0.984

TGGTGCACATTTCTTAGTAGCAA

Lox2 Lipoxygenase 2 Phvul.005G156700 ATGCAAGGCTAAAGAGATCCAA –

ATGGTGACAGGAGCTAAACACA

Lox7 Lipoxygenase 2 Phvul.005G156900 GAAGGCTTGACTTTCAGAGGAA –

AACACACGAGAAGATTCAACCA

Oxidative stress

GSTa 2.4-D inducible glutathione S-transferase Phvul.002G241400 AGGGAGTCACACTGGCTATGTT 1.013

ATGTGCCATTTGCATTTTAGTG

hGS Homoglutathione synthetase Phvul.006G094500 GTGGCTATATGGTGCGTACAAA 1.023

GAAACAAGAATGCATCTCCTCA

Amintransf2 Aminotransferase 2 Phvul.006G029100 TTCTTCCTTTTCTGCTCTTTCAA –

AGATGACAAGATGCAATGATTTTT

(–) Genes that empirically showing expression but showing negative qPCR results.
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FIGURE 3 | Evaluation of the diameter of the hypocotyl (above left), length of root system (above right) dry weight of the aerial part (below left) and
root system (below right) of bean plants grown during 45 days after sowing. [Trichoderma velutinum T028 without pathogen (CT028), T. velutinum T028 with
Rhizoctonia solani (RT028), R. solani control (RC) and control without fungus (CC)]. Differences statistically significant respect to control plants (p < 0.05) are
indicated with different letters.

the expression of PR1, PR2, PR3, and PR4 was down-regulated
when beans were inoculated with R. solani.

WRKY33 is also involved in the regulation of the expression
of genes modulated by components of the ethylene signaling
pathway. In this work, expression of the ERF1 and ERF5 reached
similar significant values either with or without Trichoderma and
or R. solani in the substrate. This result contrasts with previous
reports showing that ERF5 was up-regulated and WRKY33
was down-regulated in Arabidopsis infected with Alternaria
brassicicola (Son et al., 2012). WRKY33 would act as a represor
of ERF1 and ERF5 expression. Thus, when the expression of
WRKY33 is increased, expression of ERF1 and ERF5 is down-
regulated.

CH5b encodes an endochitinase precursor and it is also related
with the ethylene signaling pathway. In previous works, it has
been shown that, when this gene was over-expressed the R. solani
symptoms were reduced in crops like Nicotiana tabacum and
Brassica napus (Broglie et al., 1991). However, in this study, when
bean plants were in contact with R. solani, the expression of this
gene was down-regulated but not significantly, while treatment of
these infected plants with T. velutinum resulted in its significant
up-regulation. These results are in agreement with previous data,

showing that the pathogen represses its expression, and the
presence of Trichoderma induced it (Mayo et al., 2015).

PAL plays an important role in plant defense; it is involved in
the biosynthesis of salicylic acid, which is related to plant systemic
resistance (Nugroho et al., 2002; Chaman et al., 2003). PAL gene
expression is also regulated in response to pathogen infection. In
this work, the presence of T. velutinum and R. solani in the soil
resulted in a significant down-regulation of this gene compared
with control plants.

Osmotins have plant protective effects against pathogen
infection (Narasimhan et al., 2009). In this study, when
T. velutinum or R. solani were present in the soil, the expression
of OSM34 was not significantly up-regulated respect to control
plants, but when both fungi were in the soil at the same time,
OSM34 was slightly but significantly down-regulated.

The CNGC genes can be related to early plant defense
responses due to changes in ion flux, including H+ and Ca2+

influx and K+ and Cl− efflux (Atkinson et al., 1996). The up-
regulation of CNGC2 can confirm the importance of ion channels
for the plant resistance response (Borges et al., 2012). In this
work, this gene was up-regulated when R. solani was present in
the soil not significant. Conversely, CNGC2 was down-regulated
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FIGURE 4 | Analysis of relative expression levels of the bean defense genes selected in the present work in bean plants infected with R. solani versus
their levels of expression in control plants. The data were analyzed by the 2−11Ct method. The differences statistically significant respect to control plants
(p < 0.05) are indicated with an asterisk.

FIGURE 5 | Analysis of relative expression levels of the bean defense genes selected in the present work in bean plants treated with T. velutinum
versus their levels of expression in control plants. The data were analyzed as indicated in the legend to the Figure 4.

FIGURE 6 | Analysis of relative expression levels of the bean defense genes selected in the present work in bean plants infected with R. solani and
treated with T. velutinum versus their levels of expression in control plants. The data were analyzed as indicated in the legend to the Figure 4.
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in plants treated with T. velutinum. Then, the pathogen would
induce an activation of hypersensitive defense mechanisms.

Hydroperoxide lyase (HPL) is involved in the production
of antimicrobial and defense signaling oxylipins (Noordermeer
et al., 2001; Huang et al., 2010). In this study, the presence of
T. velutinum and R. solani, resulted in a down-regulation of this
gene expression respect to control plants. In previous works,
when tomato plants were in contact with Botrytis cinerea, HPL
expression increased 24 h after gray mold infection, but after
that time the expression of this gene decreased gradually (Wan
et al., 2013). In the present case, after 45 days in contact with
the fungus T. velutinum and/or R. solani, its expression was
down-regulated, indicating that the plant identifies Trichoderma
and Rhizoctonia as two invader organisms, and some of the
mechanisms activated against the presence of both are similar,
independently of the final response specifically activated in the
plant by each one.

GSTa (2,4-D inducible glutathione S-transferase) expression
also responds to pathogen attack (Mauch and Dudler, 1993)
and can be induced by molecules such as salicylic acid, methyl
jasmonate, abscisic acid and H2O2 (Dixon et al., 2002; Moons,
2005). In Gossypium arboretum, GST provides resistance to
fungal pathogens and oxidative stress (Barthelson et al., 2010).
GST expression was up-regulated during fungal infection in
barley, Arabidopsis, and cotton (Dowd et al., 2004; Durrant and
Dong, 2004; Lu et al., 2005). However, in banana GST was
down-regulated following Fusarium oxysporum f specialis (f. sp.)
cubense infection (Wang et al., 2013), which is in agreement
with the present case, where the expression of GSTa was down-
regulated when T. velutinum and/or R. solani were present in the
soil.

hGS encodes a homoglutathione synthetase that is involved
in response to oxidative stress. There is not much information
about the behavior of this gene in the plant. In the present
study, when bean plants were in contact with T. velutinum
and/or R. solani, expression of this gene was significantly
up-regulated compared to control plants. In other studies,
treatment of Medicago truncatula plants with compounds that
release nitric oxide, a key signaling molecule in plants, induced
expression of GST but not hGS in roots (Innocenti et al., 2007).
Similarly, common bean plants treated with H2O2 showed up-
regulation of hGS in nodules, whereas treatments with cadmium,
sodium chloride, or jasmonic acid had no effect (Loscos et al.,
2008).

CONCLUSION

From 48 genes initially analyzed, 14 bean genes were selected
in the present work and only WRKY33, CH5b and hGS showed

an up-regulatory response in the presence of T. velutinum, the
other genes were or not affected (OSM34) or down-regulated
by the presence of this fungus. R. solani infection resulted in
a down-regulation of most of the genes analyzed, except PR1,
OSM34 and CNGC2 that were not affected, and the presence of
both, T. velutinum and R. solani, up-regulates hGS and down-
regulates all the other genes analyzed, except CH5b which was
not significantly affected.

As conclusion, the strategy described in the present work has
been shown to be effective to detect genes involved in plant
defense, which respond to the presence of a BCA or to a pathogen
and also to the presence of both. The selected genes showed
significant homology with described plant defense genes and they
are expressed in bean leaves of plants treated with T. velutinum
and/or infected with R. solani. The proposed strategy will be very
useful in studies about the interaction of bean with pathogens and
biocontrol fungi.
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